-
Question 1
Incorrect
-
A 60-year-old woman who was discharged from the hospital 3 days ago presents to the emergency department with complaints of chest tightness and severe shortness of breath. While being evaluated, the patient suddenly becomes unresponsive and experiences cardiac arrest. Despite receiving appropriate life-saving measures, there is no return of spontaneous circulation and the patient is declared dead. Upon autopsy, a slit-like tear is discovered in the anterior wall of the left ventricle.
What factors may have contributed to the cardiac finding observed in this patient?Your Answer: Recent viral infection
Correct Answer: Coronary atherosclerosis
Explanation:Left Ventricular Free Wall Rupture Post-MI
Following a myocardial infarction (MI), the weakened myocardial wall may be unable to contain high left ventricular (LV) pressures, leading to mechanical complications such as left ventricular free wall rupture. This occurs 3-14 days post-MI and is characterized by macrophages and granulation tissue at the margins. Patients are also at high risk of papillary muscle rupture and left ventricular pseudoaneurysm. The patient’s autopsy finding of a slit-like tear in the anterior LV wall is consistent with this complication.
Coronary atherosclerosis is the most likely cause of the patient’s MI, as it is a common underlying condition. Prolonged alcohol consumption and recent viral infection can lead to dilated cardiomyopathy, while recurrent bacterial pharyngitis can cause inflammatory damage to both the myocardium and valvular endocardium. Repeated blood transfusion is not a known risk factor for left ventricular free wall rupture.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
An 82-year-old woman visits her doctor with a medical history of myocardial infarction that has resulted in permanent damage to the conduction system of her heart. The damage has affected the part of the conduction system with the highest velocities, causing desynchronisation of the ventricles.
What is the part of the heart that conducts the fastest?Your Answer: Purkinje fibres
Explanation:The Purkinje fibres have the highest conduction velocities in the heart’s electrical conduction system. The process starts with the SA node generating spontaneous action potentials, which are then conducted across both atria through cell to cell conduction at a speed of approximately 1 m/s. The only pathway for the action potential to enter the ventricles is through the AV node, which has a slow conduction speed of 0.05ms to allow for complete atrial contraction and ventricular filling. The action potentials are then conducted through the Bundle of His, which splits into the left and right bundle branches, with a conduction speed of approximately 2m/s. Finally, the action potential reaches the Purkinje fibres, which are specialized conducting cells that allow for a faster conduction speed of 2-4m/s. This fast conduction speed is crucial for a synchronized and efficient contraction of the ventricle, generating pressure during systole.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty climbing stairs and sleeping, and finds it easier to sleep in his living room chair. He used to manage stairs fine a year ago, but now has to stop twice on the way up.
When asked about other symptoms, he reports feeling slightly wheezy and occasionally coughing up white sputum. He denies any weight loss. His medical history includes angina, non-diabetic hyperglycaemia, and hypertension. He has smoked 15 cigarettes per day since he was 25 and drinks around 5 pints of lager every Friday and Saturday night.
On examination, his oxygen saturations are 96%, respiratory rate 16/min at rest, heart rate 78/min, and blood pressure 141/88 mmHg. Bibasal crackles are heard on auscultation of his lungs.
What is the most likely diagnosis?Your Answer: Heart failure
Explanation:Orthopnoea is a distinguishing symptom that can help differentiate between heart failure and COPD in patients. While the symptoms may be non-specific, the presence of orthopnoea, or breathlessness when lying down, is a key indicator of heart failure rather than COPD.
Although the patient has a significant history of smoking, there are no other signs of lung cancer such as weight loss, persistent cough, or coughing up blood. However, it is recommended to conduct an urgent chest X-ray to rule out any serious underlying conditions.
In cases of occupational asthma, symptoms tend to worsen when exposed to triggers in the workplace and improve during time off. However, in this patient’s case, the symptoms have been gradually worsening over time.
Features of Chronic Heart Failure
Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.
Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.
In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 2-year-old toddler is brought to the cardiology clinic by her mother due to concerns of episodes of turning blue, especially when laughing or crying. During the examination, the toddler is observed to have clubbing of the fingernails and confirmed to be cyanotic. Further investigation with an echocardiogram reveals a large ventricular septal defect, leading to a diagnosis of Eisenmenger's syndrome. What is the ultimate treatment for this condition?
Your Answer: Heart- lung transplant
Explanation:The most effective way to manage Eisenmenger’s syndrome is through a heart-lung transplant. Calcium-channel blockers can be used to decrease the strain on the right side of the circulation by increasing the right to left shunt. Antibiotics are also useful in preventing endocarditis. However, the use of oxygen as a long-term treatment is still a topic of debate and is not considered a definitive solution. Patients with Eisenmenger’s syndrome may also experience significant polycythemia, which may require venesection as a treatment option.
Understanding Eisenmenger’s Syndrome
Eisenmenger’s syndrome is a medical condition that occurs when a congenital heart defect leads to pulmonary hypertension, causing a reversal of a left-to-right shunt. This happens when the left-to-right shunt is not corrected, leading to the remodeling of the pulmonary microvasculature, which eventually obstructs pulmonary blood and causes pulmonary hypertension. The condition is commonly associated with ventricular septal defect, atrial septal defect, and patent ductus arteriosus.
The original murmur may disappear, and patients may experience cyanosis, clubbing, right ventricular failure, haemoptysis, and embolism. Management of Eisenmenger’s syndrome requires heart-lung transplantation. It is essential to diagnose and treat the condition early to prevent complications and improve the patient’s quality of life. Understanding the causes, symptoms, and management of Eisenmenger’s syndrome is crucial for healthcare professionals to provide appropriate care and support to patients with this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
At what age is a ventricular septal defect typically diagnosed, and what cardiovascular structure is responsible for its development due to embryological failure?
Your Answer: Endocardial cushions
Explanation:The heart’s development starts at approximately day 18 in the embryo, originating from a group of cells in the cardiogenic area of the mesoderm. The underlying endoderm signals the formation of the cardiogenic cords, which fuse together to create the primitive heart tube.
Around day 22, the primitive heart tube develops into five regions: the truncus arteriosus, bulbus cordis, primitive ventricle, primitive atrium, and sinus venosus. These regions eventually become the ascending aorta and pulmonary trunk, right and left ventricles, anterior atrial walls and appendages, and coronary sinus and sino-atrial node, respectively.
Over the next week, the heart undergoes morphogenesis, twisting and looping from a vertical tube into a premature heart with atrial and ventricular orientation present by day 28. The endocardial cushions, thickenings of mesoderm in the inner lining of the heart walls, appear and grow towards each other, dividing the atrioventricular canal into left and right sides. Improper development of the endocardial cushions can result in a ventricular septal defect.
By the end of the fifth week, the four heart chamber positions are complete, and the atrioventricular and semilunar valves form between the fifth and ninth weeks.
Understanding Ventricular Septal Defect
Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.
There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.
Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.
Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.
In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
A 55-year-old chronic smoker presents to the cardiology clinic with worsening chest pain during physical activity. After initial investigations, an outpatient coronary angiography is performed which reveals severe stenosis/atheroma in multiple vessels. The patient is informed that this condition is a result of various factors, including the detrimental effects of smoking on the blood vessels.
What is the ultimate stage in the development of this patient's condition?Your Answer: Smooth muscle proliferation and migration from the tunica media into the intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 15-year-old boy is brought to the emergency department by air ambulance following a fight. He presents with peripheral shutdown and an unrecordable blood pressure. The chest X-ray reveals a stab wound that has penetrated the left atrium and the artery that supplies it. Which artery is the most likely to have been affected?
Your Answer: Left coronary artery
Explanation:The left coronary artery and its major branch, the left circumflex, supply the left atrium. However, the other arteries do not provide blood supply to the left atrium. The right coronary artery supplies the right ventricle and the atrioventricular node + sino atrial node in most patients. The left marginal artery supplies the left ventricle, while the posterior descending artery supplies the posterior third of the interventricular septum. Lastly, the left anterior descending artery supplies the left ventricle.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 68-year-old woman has a left ankle ulcer that has been present for nine months. She had a DVT in her right leg five years ago. Upon examination, there is a 6 cm diameter slough-based ulcer on the medial malleolus without cellulitis. What investigation is required before applying compression bandaging?
Your Answer: Ankle-brachial pressure index
Explanation:Venous Ulceration and the Importance of Identifying Arterial Disease
Venous ulcerations are a common type of ulcer that affects the lower extremities. The underlying cause of venous congestion, which can promote ulceration, is venous insufficiency. The treatment for venous ulceration involves controlling oedema, treating any infection, and compression. However, compressive dressings or devices should not be applied if the arterial circulation is impaired. Therefore, it is crucial to identify any arterial disease, and the ankle-brachial pressure index is a simple way of doing this. If indicated, one may progress to a lower limb arteriogram.
It is important to note that there is no clinical sign of infection, and although a bacterial swab would help to rule out pathogens within the ulcer, arterial insufficiency is the more important issue. If there is a clinical suspicion of DVT, then duplex (or rarely a venogram) is indicated to decide on the indication for anticoagulation. By identifying arterial disease, healthcare professionals can ensure that appropriate treatment is provided and avoid potential complications from compressive dressings or devices.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 45-year-old patient presents to the emergency department with increasing dyspnea on exertion and swelling in both legs. A recent outpatient echocardiogram revealed a left ventricular ejection fraction of 31%. During chest examination, an extra heart sound is detected just prior to the first.
What is the cause of this additional heart sound?Your Answer: Delayed closure of the aortic valve
Correct Answer: Atria contracting forcefully to overcome an abnormally stiff ventricle
Explanation:The presence of S4, which sounds like a ‘gallop rhythm’, can be heard after S2 and in conjunction with a third heart sound. However, if the ventricles are contracting against a stiffened aorta, it would not produce a significant heart sound during this phase of the cardiac cycle. Any sound that may be heard in this scenario would occur between the first and second heart sounds during systole, and it would also cause a raised pulse pressure and be visible on chest X-ray as calcification. Delayed closure of the aortic valve could cause a split second heart sound, but it would appear around the time of S2, not before S1. On the other hand, retrograde flow of blood from the right ventricle into the right atrium, known as tricuspid regurgitation, would cause a systolic murmur instead of an additional isolated heart sound. This condition is often caused by infective endocarditis in intravenous drug users or a history of rheumatic fever.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 32-year-old arrives at the emergency department with a stab wound to the femoral artery. He has a history of intravenous drug use.
Due to poor vein quality, peripheral cannulation under ultrasound guidance is not feasible. Intraosseous access has been established, but additional access is required to administer large volume transfusions.
To obtain access to a vessel that runs anterior to the medial malleolus, the consultant has decided to perform a venous cutdown.
Which vessel will be accessed through this procedure?Your Answer: Short saphenous vein
Correct Answer: Long saphenous vein
Explanation:The correct answer is the long saphenous vein, which passes in front of the medial malleolus and is commonly used for venous cutdown procedures. This vein is the largest vessel in the superficial venous system and is formed from the dorsal venous arch of the foot. During a venous cutdown, the skin is opened up to expose the vessel, allowing for cannulation under direct vision.
The anterior tibial vein, fibular vein, and posterior tibial vein are all incorrect answers. The anterior tibial vein is part of the deep venous system and arises from the dorsal venous arch, while the fibular vein forms from the plantar veins of the foot and drains into the posterior tibial vein. The posterior tibial vein also arises from the plantar veins of the foot but ascends posterior to the medial malleolus.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 72-year-old man visits the clinic with complaints of palpitations and dizziness that started a day ago. He has been experiencing weakness and fatigue for the past month. During the physical examination, you observe generalized hypotonia and hyporeflexia. After conducting an ECG, you notice indications of hypokalemia. What is an ECG manifestation of hypokalemia?
Your Answer: Small or absent P waves
Correct Answer: Prominent U waves
Explanation:Hypokalaemia can be identified by the presence of U waves on an ECG. Other ECG signs of hypokalaemia include small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified by ECG signs such as a long PR interval and a sine wave pattern, as well as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. A prolonged PR interval may be found in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Abnormalities in serum potassium are often discovered incidentally, but symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and rarely paralysis. If a patient presents with palpitations and light-headedness, along with a history of weakness and fatigue, and examination findings of hypotonia and hyporeflexia, hypokalaemia should be considered as a possible cause.
Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Correct
-
A 65-year-old farmer arrives at the Emergency department with complaints of intense chest pain that spreads to his left arm and causes breathing difficulties. His heart rate is 94 bpm. What ECG changes would you expect to observe based on the probable diagnosis?
Your Answer: ST elevation in leads II, III, aVF
Explanation:ECG Changes in Myocardial Infarction
When interpreting an electrocardiogram (ECG) in a patient with suspected myocardial infarction (MI), it is important to consider the specific changes that may be present. In the case of a ST-elevation MI (STEMI), the ECG may show ST elevation in affected leads, such as II, III, and aVF. However, it is possible to have a non-ST elevation MI (NSTEMI) with a normal ECG, or with T wave inversion instead of upright T waves.
Other ECG changes that may be indicative of cardiac issues include a prolonged PR interval, which could suggest heart block, and ST depression, which may reflect ischemia. Additionally, tall P waves may be seen in hyperkalemia.
It is important to note that a patient may have an MI without displaying any ECG changes at all. In these cases, checking cardiac markers such as troponin T can help confirm the diagnosis. Overall, the various ECG changes that may be present in MI can aid in prompt and accurate diagnosis and treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a consultant and a medical student. He has a medical history of hypertension, heart failure, depression, and gout, and is currently taking ramipril, atenolol, furosemide, sertraline, allopurinol, and ibuprofen. The consultant suspects that his slightly low blood pressure may be due to his medications. The patient's urea and electrolyte levels are provided below. Can you identify the role of atenolol in reducing blood pressure?
Na+ 142 mmol/l
K+ 4.2 mmol/l
Urea 6 mmol/l
Creatinine 68 µmol/lYour Answer: Binds to beta-1 adrenoreceptors in the kidneys and promotes renin release
Correct Answer: Inhibits the release of renin from the kidneys
Explanation:Beta-blockers have an added advantage in treating hypertension as they can suppress the release of renin from the kidneys. This is because the release of renin is partly regulated by β1-adrenoceptors in the kidney, which are inhibited by beta-blockers. By reducing the amount of circulating plasma renin, the levels of angiotensin II and aldosterone decrease, leading to increased renal loss of sodium and water, ultimately lowering arterial pressure.
It is important to note that atenolol does not compete with aldosterone, unlike spironolactone, a potassium-sparing diuretic that does compete with aldosterone for its receptor. Additionally, atenolol does not inhibit the conversion of ATI to ATII, which is achieved by ACE-inhibitors like ramipril.
While both beta-1 and beta-2 receptors are present in the heart, atenolol primarily acts on beta-1 receptors, resulting in negative inotropic, negative chronotropic, and positive lusitropic effects. Lusitropy refers to the relaxation of the heart.
Therefore, the statement that atenolol inhibits the release of renin is correct, and the fifth option is incorrect.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 32-year-old woman arrives at the emergency department with a sudden and severe headache, describing it as the worst she has ever experienced. She has a medical history of hypertension and polycystic kidney disease (PKD). The emergency physician diagnoses a subarachnoid hemorrhage, which is a common complication of her PKD.
What is the gold standard investigation for intracranial vascular disease?Your Answer: Contrast CT of the head
Correct Answer: Cerebral angiography
Explanation:The gold standard investigation for intracranial vascular disease is cerebral angiography, which can diagnose intracranial aneurysms and other vascular diseases by visualizing arteries and veins using contrast dye injected into the bloodstream. This technique can also create 3-D reconstructed images that allow for a comprehensive view of the cerebral vessels and accompanying pathology from all angles.
Individuals with PKD are at an increased risk of cerebral aneurysms, which can lead to subarachnoid hemorrhages.
Flow-Sensitive MRI (FS MRI) is a useful tool that combines functional MRI with images of cerebrospinal fluid (CSF) flow. It can aid in planning the surgical removal of skull base tumors, spinal cord tumors, or tumors causing hydrocephalus.
While contrast and non-contrast CT scans are commonly used as the first line of investigation for intracranial lesions, they are not the gold standard and are superseded by cerebral angiography.
Understanding Cerebral Blood Flow and Angiography
Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.
Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
An 80-year-old woman arrives at the Emergency Department reporting painless loss of vision on the right side that started 30 minutes ago. Based on the history and examination, it is probable that she has experienced an ophthalmic artery stroke. Which branch of the Circle of Willis is likely affected?
Your Answer: Retinal artery
Correct Answer: Internal carotid artery
Explanation:The ophthalmic artery originates from the internal carotid artery, which is part of the Circle of Willis, a circular network of arteries that supply the brain. The anterior cerebral arteries, which supply the frontal and parietal lobes, as well as the corpus callosum and cingulate cortex of the brain, also arise from the internal carotid artery. A stroke of the ophthalmic artery or its branch, the central retinal artery, can cause painless loss of vision. The basilar artery, which forms part of the posterior cerebral circulation, is formed from the convergence of the two vertebral arteries and gives rise to many arteries, but not the ophthalmic artery. The posterior cerebral artery, which supplies the occipital lobe, arises from the basilar artery.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Correct
-
A 78-year-old woman has presented with dyspnea. During cardiovascular examination, a faint murmur is detected in the mitral area. If the diagnosis is mitral stenosis, what is the most probable factor that would increase the loudness and clarity of the murmur during auscultation?
Your Answer: Ask the patient to breathe out
Explanation:To accentuate the sound of a left-sided murmur consistent with mitral stenosis during a cardiovascular examination, the patient should be asked to exhale. Conversely, a right-sided murmur is louder during inspiration. Listening in the left lateral position while the patient is lying down can also emphasize a mitral stenosis. To identify a mitral regurgitation murmur, listening in the axilla is helpful as it radiates. Diastolic murmurs can be heard better with a position change, while systolic murmurs tend to radiate and can be distinguished by listening in different anatomical landmarks. For example, an aortic stenosis may radiate to the carotids, while an aortic regurgitation may be heard better with the patient leaning forward.
Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 22-year-old man was admitted earlier in the day with a fractured fibula following a skateboarding accident. He underwent surgical repair but has suddenly developed a tachycardia on the recovery ward. His vital signs reveal a heart rate of 170 beats/minute, respiratory rate of 20 breaths/minute, and blood pressure of 80/55 mmHg. His ECG shows ventricular tachycardia. The physician decides to perform synchronised DC cardioversion.
What is the most appropriate course of action for this patient?Your Answer: DC cardioversion shock synchronised to the ECG P wave
Correct Answer: DC cardioversion shock synchronised to the ECG R wave
Explanation:When a patient displays adverse features such as shock, syncope, heart failure, or myocardial ischaemia while in ventricular tachycardia, electrical cardioversion synchronized to the R wave is the recommended treatment. If the patient does not respond to up to three synchronized DC shocks, it is important to seek expert help and administer 300mg of IV adenosine. Administering IV fluids would not be an appropriate management choice as it would not affect the patient’s cardiac rhythm.
Cardioversion for Atrial Fibrillation
Cardioversion may be used in two scenarios for atrial fibrillation (AF): as an emergency if the patient is haemodynamically unstable, or as an elective procedure where a rhythm control strategy is preferred. Electrical cardioversion is synchronised to the R wave to prevent delivery of a shock during the vulnerable period of cardiac repolarisation when ventricular fibrillation can be induced.
In the elective scenario for rhythm control, the 2014 NICE guidelines recommend offering rate or rhythm control if the onset of the arrhythmia is less than 48 hours, and starting rate control if it is more than 48 hours or is uncertain.
If the AF is definitely of less than 48 hours onset, patients should be heparinised. Patients who have risk factors for ischaemic stroke should be put on lifelong oral anticoagulation. Otherwise, patients may be cardioverted using either electrical or pharmacological methods.
If the patient has been in AF for more than 48 hours, anticoagulation should be given for at least 3 weeks prior to cardioversion. An alternative strategy is to perform a transoesophageal echo (TOE) to exclude a left atrial appendage (LAA) thrombus. If excluded, patients may be heparinised and cardioverted immediately. NICE recommends electrical cardioversion in this scenario, rather than pharmacological.
If there is a high risk of cardioversion failure, it is recommended to have at least 4 weeks of amiodarone or sotalol prior to electrical cardioversion. Following electrical cardioversion, patients should be anticoagulated for at least 4 weeks. After this time, decisions about anticoagulation should be taken on an individual basis depending on the risk of recurrence.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Correct
-
A 44-year-old woman presents with varicose veins and has a saphenofemoral disconnection, long saphenous vein stripping to the ankle, and isolated hook phlebectomies. After the surgery, she experiences numbness above her ankle. What is the probable reason for this?
Your Answer: Saphenous nerve injury
Explanation:Full length stripping of the long saphenous vein below the knee is no longer recommended due to its relation to the saphenous nerve, while the short saphenous vein is related to the sural nerve.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 50-year-old man is brought to the emergency department following a collapse on the street. Upon examination, he displays visual and oculomotor deficits, but his motor function remains intact. Digital subtraction angiography reveals a basilar artery occlusion at the point where the vertebral arteries merge to form the basilar artery. What anatomical feature corresponds to the location of the occlusion?
Your Answer: The base of the medulla
Correct Answer: The base of the pons
Explanation:The basilar artery is formed by the union of the vertebral arteries at the base of the pons.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Correct
-
A 25-year-old athlete is collaborating with the cardiovascular physiology department to enhance their performance. They are observing their heart rate to optimize their training routine. After a rigorous treadmill test, their heart rate rises from 56 beats per minute (BPM) to 184 BPM, leading to an increase in their cardiac output.
What is the most accurate description of the alterations in stroke volume during the treadmill test?Your Answer: Increased venous return from the muscles, increases preload and increases stroke volume
Explanation:When the body is exercising, the heart needs to increase its output to meet the increased demand for oxygen in the muscles. This is achieved by increasing the heart rate, but there is a limit to how much the heart rate can increase. To achieve a total increase in cardiac output, the stroke volume must also increase. This is done by increasing the preload, which is facilitated by an increase in venous return.
Therefore, an increase in venous return will always result in an increase in preload and stroke volume. Conversely, a decrease in venous return will lead to a decrease in preload and stroke volume, as there is less blood returning to the heart from the rest of the body. It is important to note that an increase in venous return cannot result in a decrease in either stroke volume or preload.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)