-
Question 1
Correct
-
What triggers the release of neurotransmitter from presynaptic vesicles into the synaptic cleft?
Your Answer: Calcium
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 2
Correct
-
Which of the following binds to metabotropic receptors but not ionotropic receptors?
Your Answer: Dopaminergic
Explanation:Dopamine receptors are classified as metabotropic receptors rather than ionotropic receptors.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 3
Correct
-
Which of the following is not a description of a dopamine pathway in the brain that is relevant to schizophrenia?
Your Answer: Median raphe nucleus to VTA
Explanation:The median raphe nucleus is a group of neurons located in the brainstem that plays a crucial role in regulating mood, anxiety, and stress. It is connected to various brain regions, including the ventral tegmental area (VTA), which is a key component of the brain’s reward system.
The connection between the median raphe nucleus and the VTA is important because it allows for the modulation of reward-related behaviors and emotions. The median raphe nucleus sends serotonergic projections to the VTA, which can influence the release of dopamine, a neurotransmitter that is associated with pleasure and reward.
Studies have shown that disruptions in the communication between the median raphe nucleus and the VTA can lead to various psychiatric disorders, such as depression and addiction. Therefore, understanding the mechanisms underlying this connection is crucial for developing effective treatments for these conditions.
In summary, the connection between the median raphe nucleus and the VTA is an important pathway for regulating reward-related behaviors and emotions, and disruptions in this pathway can lead to psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 4
Correct
-
Which part of a neuron is accountable for generating energy?
Your Answer: Mitochondria
Explanation:Melanin
Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 5
Correct
-
Where is serotonin primarily produced in the body?
Your Answer: Raphe nuclei
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 6
Incorrect
-
Which artery blockage is most likely to cause Broca's aphasia?
Your Answer: Anterior cerebral
Correct Answer: Middle cerebral
Explanation:Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 7
Incorrect
-
Which statement accurately describes the neurobiology of schizophrenia?
Your Answer: Relatives of people affected with schizophrenia tend to lack brain abnormalities
Correct Answer: Structural brain abnormalities are present at the onset of illness
Explanation:Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 8
Correct
-
Which of the following do not describe the features of REM sleep?
Your Answer: K complexes on the EEG
Explanation:During REM sleep, the EEG patterns resemble those observed during wakefulness, characterized by numerous beta-rhythms that are fast.
Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 9
Correct
-
What is located within Brodmann area 22?
Your Answer: Wernicke's area
Explanation:Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 10
Incorrect
-
What is the most common symptom associated with primary progressive aphasia?
Your Answer: Posterior temporal lobe atrophy more pronounced than anterior temporal lobe
Correct Answer: Atrophy of left perisylvian region
Explanation:Primary progressive aphasia is a specific type of frontotemporal dementia that is characterized by the degeneration of the left perisylvian region. Frontotemporal dementia can be divided into two subtypes: behavioral, which involves atrophy of the frontal region, and language, which includes primary progressive aphasia and semantic dementia. The language subtypes of frontotemporal dementia typically exhibit more severe atrophy on the left side of the brain. Semantic dementia is characterized by greater atrophy in the anterior temporal lobe compared to the posterior temporal lobe. In contrast, Alzheimer’s dementia is associated with bilateral hippocampal atrophy, while vascular dementia is characterized by diffuse white matter lesions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 11
Incorrect
-
In dementia pugilistica, which structure is commonly found to be abnormal?
Your Answer:
Correct Answer: Septum pellucidum
Explanation:A fenestrated cavum septum pellucidum is linked to dementia pugilistica.
Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 12
Incorrect
-
What is the accuracy of the dopamine hypothesis in explaining schizophrenia?
Your Answer:
Correct Answer: Cannabinoid agonists have been shown in animals to increase striatal dopamine release
Explanation:The Dopamine Hypothesis is a theory that suggests that dopamine and dopaminergic mechanisms are central to schizophrenia. This hypothesis was developed based on observations that antipsychotic drugs provide at least some degree of D2-type dopamine receptor blockade and that it is possible to induce a psychotic episode in healthy subjects with pharmacological dopamine agonists. The hypothesis was further strengthened by the finding that antipsychotic drugs’ clinical effectiveness was directly related to their affinity for dopamine receptors. Initially, the belief was that the problem related to an excess of dopamine in the brain. However, later studies showed that the relationship between hypofrontality and low cerebrospinal fluid (CSF) dopamine metabolite levels indicates low frontal dopamine levels. Thus, there was a move from a one-sided dopamine hypothesis explaining all facets of schizophrenia to a regionally specific prefrontal hypodopaminergia and a subcortical hyperdopaminergia. In summary, psychosis appears to result from excessive dopamine activity in the striatum, while the negative symptoms seen in schizophrenia appear to result from too little dopamine activity in the frontal lobe. Antipsychotic medications appear to help by countering the effects of increased dopamine by blocking postsynaptic D2 receptors in the striatum.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 13
Incorrect
-
In which region of the CNS do serotonergic neurons have the highest concentration of cell bodies?
Your Answer:
Correct Answer: Raphe nuclei
Explanation:The raphe nuclei in the brainstem are the primary location of serotonergic neuronal cell bodies in the central nervous system (CNS), which project to the brain and spinal cord. Noradrenaline is synthesised by the locus coeruleus, located in the pons. Dopamine is produced in the substantia nigra and ventral tegmental area in the midbrain. While the majority of serotonin is found in enterochromaffin cells in the gastrointestinal (GI) tract, this is not considered part of the CNS. These neurotransmitters play important roles in various physiological and psychological processes.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 14
Incorrect
-
Which wave pattern is considered the most abnormal during a state of wakefulness?
Your Answer:
Correct Answer: Delta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 15
Incorrect
-
A person who struggles with reproducing intersecting pentagons on the MMSE at an older age is likely to experience difficulties with which of the following?
Your Answer:
Correct Answer: Non dominant parietal lobe
Explanation:The inability to accurately replicate intersecting pentagons may indicate a constructional apraxia, which is a symptom of non-dominant parietal lobe dysfunction.
Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 16
Incorrect
-
What is the role of the Golgi apparatus in a neuron?
Your Answer:
Correct Answer: Packaging of macromolecules
Explanation:Melanin
Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 17
Incorrect
-
What type of apraxia is demonstrated by the difficulty in reproducing intersecting pentagons on the MMSE?
Your Answer:
Correct Answer: Constructional
Explanation:Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements
Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.
Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.
Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.
Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.
Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.
Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.
Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 18
Incorrect
-
Which condition is most commonly associated with fast, generalized spike and wave activity on the EEG?
Your Answer:
Correct Answer: Myoclonic epilepsy
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 19
Incorrect
-
What type of apraxia is indicated when a patient is given a pencil during a neurological examination and they attempt to use it to brush their teeth after looking at it for a minute?
Your Answer:
Correct Answer: Ideomotor
Explanation:The inability to carry out complex instructions is referred to as Ideational Apraxia, while the inability to perform previously learned actions with the appropriate tools is known as Ideomotor Apraxia.
Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements
Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.
Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.
Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.
Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.
Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.
Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.
Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 20
Incorrect
-
A 40-year-old individual who has been struggling with opioid addiction is experiencing symptoms of opioid dependence. What electroencephalographic alterations are commonly observed in cases of opioid dependence?
Your Answer:
Correct Answer: Decreased alpha activity
Explanation:Opioid dependence is characterized by a decrease in alpha activity on electroencephalography (EEG). Other drugs have distinct EEG changes, such as increased beta activity with benzodiazepines, decreased alpha activity and increased theta activity with alcohol, and increased beta activity with barbiturates. Marijuana use is associated with increased alpha activity in the frontal area of the brain and overall slow alpha activity. During opioid overdose, slow waves may be observed on EEG, while barbiturate withdrawal may result in generalized paroxysmal activity and spike discharges.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 21
Incorrect
-
Which receptor's agonist effect is most likely responsible for anorgasmia caused by SSRIs?
Your Answer:
Correct Answer: 5HT2C
Explanation:As an AI language model, I cannot provide a response without knowing the context of the rewrite you are referring to. Please provide more information of context so that I can assist you better.
Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 22
Incorrect
-
Which serotonin receptor is associated with regulating circadian rhythms?
Your Answer:
Correct Answer: 5HT-7
Explanation:Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 23
Incorrect
-
Who coined the term 'punch drunk syndrome'?
Your Answer:
Correct Answer: Martland
Explanation:Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 24
Incorrect
-
Which of the following conditions is characterized by an increase in the size of the ventricles on structural neuroimaging over time?
Your Answer:
Correct Answer: Alzheimer's dementia
Explanation:Neuroimaging studies have shown that Alzheimer’s dementia is linked to a gradual increase in ventricular size, while schizophrenia is associated with non-progressive enlargement of the lateral and third ventricles. Although some studies have reported increased ventricular size in individuals with affective disorders, the findings are not consistent. Additionally, individuals with antisocial personality disorder may have reduced prefrontal gray matter volume.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 25
Incorrect
-
What is a true statement about the neuropathology of Alzheimer's disease?
Your Answer:
Correct Answer: Tau accumulations are found in both senile plaques and neurofibrillary tangles
Explanation:Senile plaques and neurofibrillary tangles contain accumulations of hyperphosphorylated tau, while Hirano bodies are primarily composed of actin. The cytoskeleton is made up of microtubules (composed of tubulin), actin filaments, and intermediate filaments. Lewy bodies are characterized by the presence of insoluble aggregates of α-Synuclein, a protein that plays a role in regulating synaptic vesicle trafficking and neurotransmitter release.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 26
Incorrect
-
What is the neural pathway that links areas of the frontal lobe to areas of the temporal lobe within the same hemisphere?
Your Answer:
Correct Answer: Superior Longitudinal (arcuate) Fasciculus
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 27
Incorrect
-
Which cranial nerve travels through the cribriform plate of the ethmoid bone on its way to the brain?
Your Answer:
Correct Answer: Olfactory nerve
Explanation:The olfactory nerves are responsible for the sense of smell. They originate in the upper part of the nose’s mucous membrane and travel through the ethmoid bone’s cribriform plate. From there, they reach the olfactory bulb, where nerve cells synapse and transmit the impulse to a second neuron. Finally, the nerves travel to the temporal lobe of the cerebrum, where the perception of smell occurs.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 28
Incorrect
-
What brain structures are responsible for regulating breathing and heart rate?
Your Answer:
Correct Answer: Medulla
Explanation:The medulla governs the rhythm of the heart and respiration. The amygdala regulates emotional reactions and the ability to perceive the emotions of others. The midbrain is linked to vision, hearing, motor coordination, sleep patterns, alertness, and temperature regulation. The cerebellum manages voluntary movement and balance. The thalamus transmits sensory and motor signals to the cerebral cortex.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 29
Incorrect
-
What brain region has been identified as a target for deep brain stimulation (DBS) in individuals with treatment-resistant depression?
Your Answer:
Correct Answer: Nucleus accumbens
Explanation:Deep brain stimulation (DBS) for treatment resistant depression targets specific brain regions based on their known involvement in pleasure, reward, and mood regulation. The nucleus accumbens is targeted due to its role in pleasure and reward processing. The inferior thalamic peduncle is targeted based on PET studies showing hyperactivity in depression. The lateral habenula is chosen due to observed hypermetabolism in depressed patients. The subgenual cingulate gyrus is targeted due to its hyperactivity in depression. The ventral capsule/ventral striatum is chosen based on its association with improved mood and reduced depressive symptoms following ablation treatments for OCD and depression.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 30
Incorrect
-
Which type of dementia is characterized by the presence of clumps of aggregated alpha synuclein in the cell bodies and axons of neurons?
Your Answer:
Correct Answer: Lewy body dementia
Explanation:Alpha-synuclein is the main component of Lewy bodies, which are inclusion bodies found in the cytoplasm of neurons and appear eosinophilic.
Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.
Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.
In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.
Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 31
Incorrect
-
What is the most likely diagnosis when an MRI shows high signal in the medial aspects of both thalami that is bilateral and symmetrical?
Your Answer:
Correct Answer: Variant CJD
Explanation:The pulvinar sign seen on radiological imaging can indicate several possible conditions, including Alper’s Syndrome, cat-scratch disease, and post-infectious encephalitis. It may also be present in cases of M/V2 subtype of sporadic CJD, thalamic infarctions, and top-of-the-basilar ischemia. However, when considering vCJD, the pulvinar sign should be evaluated in the appropriate clinical context.
Creutzfeldt-Jakob Disease: Differences between vCJD and CJD
Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.
vCJD:
– Longer duration from onset of symptoms to death (a year of more)
– Presents with psychiatric and behavioral symptoms before neurological symptoms
– MRI shows pulvinar sign
– EEG shows generalized slowing
– Originates from infected meat products
– Affects younger people (age 25-30)CJD:
– Shorter duration from onset of symptoms to death (a few months)
– Presents with neurological symptoms
– MRI shows bilateral anterior basal ganglia high signal
– EEG shows biphasic and triphasic waves 1-2 per second
– Originates from genetic mutation (bad luck)
– Affects older people (age 55-65)Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 32
Incorrect
-
From which gland is melatonin secreted?
Your Answer:
Correct Answer: Pineal
Explanation:The pineal gland secretes melatonin, while the adrenal glands secrete cortisol, aldosterone, adrenaline, and noradrenaline. The release of pituitary hormones is regulated by the hypothalamus, which synthesizes and secretes releasing hormones. Additionally, the parathyroid glands secrete parathyroid hormone (PTH).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 33
Incorrect
-
From which substance is gamma-aminobutyric acid synthesized?
Your Answer:
Correct Answer: Glutamate
Explanation:Glutamate is the precursor for the synthesis of GABA.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 34
Incorrect
-
What is the term used to describe the inability to perceive multiple objects in the visual field simultaneously?
Your Answer:
Correct Answer: Simultanagnosia
Explanation:Agnosia is a condition where a person loses the ability to recognize objects, persons, sounds, shapes, of smells, despite having no significant memory loss of defective senses. There are different types of agnosia, such as prosopagnosia (inability to recognize familiar faces), anosognosia (inability to recognize one’s own condition/illness), autotopagnosia (inability to orient parts of the body), phonagnosia (inability to recognize familiar voices), simultanagnosia (inability to appreciate two objects in the visual field at the same time), and astereoagnosia (inability to recognize objects by touch).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 35
Incorrect
-
What gas functions as a neurotransmitter?
Your Answer:
Correct Answer: Carbon monoxide
Explanation:It’s important to differentiate between nitrogen and nitrous oxide, as they have distinct properties. Nitrogen is not a neurotransmitter, while nitrous oxide is sometimes used for its anesthetic and analgesic effects.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 36
Incorrect
-
Which language assessment is considered a neuropsychological test?
Your Answer:
Correct Answer: Token test
Explanation:The neuropsychological assessment includes the token test, which is a language test that uses various tokens, such as differently coloured rectangles and circular discs. The subject is given verbal instructions of increasing complexity to perform tasks with these tokens, and it is a sensitive measure of language comprehension impairment, particularly in cases of aphasia. Additionally, there are several tests of executive function that assess frontal lobe function, including the Stroop test, Tower of London test, Wisconsin card sorting test, Cognitive estimates test, Six elements test, Multiple errands task, and Trails making test.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 37
Incorrect
-
With what condition of disease are Hirano bodies commonly linked?
Your Answer:
Correct Answer: Alzheimer's
Explanation:Hirano bodies are considered to be a general indication of neuronal degeneration and are primarily observed in cases of Alzheimer’s disease.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 38
Incorrect
-
Which area of the brain is responsible for causing hemiballismus when it is damaged?
Your Answer:
Correct Answer: Subthalamic nucleus
Explanation:Hemiballismus is an uncommon condition that arises following a stroke affecting the basal ganglia, particularly the subthalamic nucleus. It is typically identified by uncontrolled flinging movements of the limbs, which can be forceful and have a broad range of motion. These movements are unpredictable and ongoing, and may affect either the proximal or distal muscles on one side of the body.
The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 39
Incorrect
-
What is a true statement about the cerebral cortex?
Your Answer:
Correct Answer: The neocortex contains pyramidal cells
Explanation:The cortex is composed of neurons, with the majority being pyramidal neurons that are excitatory and contain glutamate. Grey matter is where neural cell bodies are located, while white matter mainly consists of myelinated axon tracts. The color contrast between the two is due to the white appearance of myelin.
The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 40
Incorrect
-
Anomic aphasia is most likely to occur due to a lesion in which area?
Your Answer:
Correct Answer: Angular gyrus
Explanation:The parahippocampal gyrus is located surrounding the hippocampus and is involved in memory processing. Asymmetry in this area has also been observed in individuals with schizophrenia.
Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 41
Incorrect
-
Which symptom is most commonly associated with occlusion of the posterior cerebral artery?
Your Answer:
Correct Answer: Contralateral homonymous hemianopia with macular sparing
Explanation:Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 42
Incorrect
-
Which of these is a feature of Balint's syndrome?
Your Answer:
Correct Answer: Simultagnosia
Explanation:Simultagnosia is a condition where an individual is unable to focus on more than one aspect of a complex scene at a time. This condition, along with optic ataxia and oculomotor apraxia, is part of Balint’s syndrome.
Gerstmann syndrome is characterized by four symptoms: dysgraphia/agraphia, dyscalculia/acalculia, finger agnosia, and left-right disorientation. This syndrome is linked to a lesion in the dominant parietal lobe, specifically the left side of the angular and supramarginal gyri. It is rare for an individual to present with all four symptoms of the tetrad.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 43
Incorrect
-
A 65-year-old woman passed away unexpectedly due to a heart attack. She had been experiencing significant difficulties with her short-term memory, which had been impacting her daily activities. Upon conducting an autopsy of her brain, it was discovered that she had widespread cerebral atrophy, as well as numerous neurofibrillary tangles and neuritic plaques. What is the probable diagnosis?
Your Answer:
Correct Answer: Alzheimer's disease
Explanation:Neurofibrillary tangles and neuritic (senile) plaques are commonly found in the brains of elderly individuals, but they are not present in Lewy body dementia. Pick’s disease is characterized by the presence of Pick’s bodies and knife blade atrophy. Creutzfeldt-Jakob disease (CJD) is identified by the spongy appearance of the grey matter in the cerebral cortex due to multiple vacuoles. If an individual experiences short-term memory problems that affect their daily life, it may indicate the presence of dementia. Alzheimer’s disease is characterized by extensive tangles and plaques in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 44
Incorrect
-
What is the pathway that links the lateral geniculate nucleus to the primary visual cortex in the occipital lobe?
Your Answer:
Correct Answer: Geniculocalcarine tract
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 45
Incorrect
-
Which neurochemical pathway is responsible for causing extrapyramidal side effects (EPSEs) due to dopamine blockade?
Your Answer:
Correct Answer: Nigrostriatal
Explanation:The Four Dopamine Pathways in the Brain
The brain has four main dopamine pathways that play crucial roles in regulating various functions. The nigrostriatal pathway is responsible for motor movement and runs from the substantia nigra to the basal ganglia. However, blocking D2 receptors in this pathway can lead to extrapyramidal side effects (EPSEs).
The tuberoinfundibular pathway, on the other hand, runs from the hypothalamus to the anterior pituitary and is responsible for regulating prolactin secretion. Dopamine inhibits prolactin secretion, which is why D2 selective antipsychotics can cause hyperprolactinemia.
The mesocortical pathway originates from the ventral tegmental area (VTA) and runs to the prefrontal cortex. This pathway plays a crucial role in regulating cognition, executive functioning, and affect.
Finally, the mesolimbic pathway also originates from the VTA and runs to the nucleus accumbens. This pathway is responsible for mediating positive psychotic symptoms, and dopamine hyperactivity in this pathway can lead to the development of these symptoms.
Overall, understanding the different dopamine pathways in the brain is crucial for developing effective treatments for various psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 46
Incorrect
-
What is the condition that occurs due to the deterioration of the caudate nucleus?
Your Answer:
Correct Answer: Huntington's
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 47
Incorrect
-
What substance is combined with choline to produce acetylcholine?
Your Answer:
Correct Answer: Acetyl coenzyme A
Explanation:The enzyme choline acetyltransferase facilitates the production of acetylcholine by catalyzing the combination of choline and Acetyl coenzyme A.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 48
Incorrect
-
Which area of the brain is most likely to be damaged in order to result in prosopagnosia?
Your Answer:
Correct Answer: Fusiform gyrus
Explanation:Understanding Prosopagnosia: The Inability to Recognize Faces
Prosopagnosia, also known as face blindness, is a condition where individuals are unable to recognize faces. This complex process involves various areas of the brain, with the fusiform gyrus in the temporal lobe being the most significant. The inability to recognize faces can be caused by damage to this area of the brain of can be a result of a developmental disorder.
The condition can be challenging for individuals as it can affect their ability to recognize familiar faces, including family members and friends. It can also impact their social interactions and make it difficult to navigate social situations. While there is no cure for prosopagnosia, individuals can learn to use other cues such as voice, clothing, and context to recognize people.
Understanding prosopagnosia is crucial in providing support and accommodations for individuals who experience this condition. It is essential to raise awareness and promote research to develop effective interventions to help individuals with face blindness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 49
Incorrect
-
A 45-year-old man experiences a stroke caused by a ruptured berry aneurysm in the middle cerebral artery.
What tests would you anticipate to show abnormalities?Your Answer:
Correct Answer: Luria's motor test
Explanation:Damage to the frontal lobe can impact sequencing abilities, as evidenced by Luria’s motor test which involves performing a sequence of fist-edge-palm movements. Additionally, the anterior cerebral artery is responsible for supplying blood to the frontal lobes.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 50
Incorrect
-
What is the most probable outcome of damage to Broca's area?
Your Answer:
Correct Answer: Non-fluent aphasia
Explanation:Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 51
Incorrect
-
Which of the following ocular presentations is atypical for multiple sclerosis?
Your Answer:
Correct Answer: Raised intraocular pressure
Explanation:There is no correlation between multiple sclerosis and raised intraocular pressure, which is known as glaucoma when accompanied by visual field loss.
Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 52
Incorrect
-
Which pathway's dopamine blockade is responsible for the antipsychotic-induced extrapyramidal side effects?
Your Answer:
Correct Answer: Nigrostriatal
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 53
Incorrect
-
What is the name of the dural reflection that acts as a boundary between the cerebellum and the occipital lobes of the cerebrum?
Your Answer:
Correct Answer: Tentorium cerebelli
Explanation:Dura Mater
The dura mater is one of the three membranes, known as meninges, that cover the brain and spinal cord. It is the outermost and most fibrous layer, with the pia mater and arachnoid mater making up the remaining layers. The pia mater is the innermost layer.
The dura mater is folded at certain points, including the falx cerebri, which separates the two cerebral hemispheres of the brain, the tentorium cerebelli, which separates the cerebellum from the cerebrum, the falx cerebelli, which separates the cerebellar hemispheres, and the sellar diaphragm, which covers the pituitary gland and forms a roof over the hypophyseal fossa.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 54
Incorrect
-
During which stage of sleep do sleep spindles appear on an EEG in a typical individual?
Your Answer:
Correct Answer: Stage 2
Explanation:Sleep is a complex process that involves different stages. These stages are categorized into Non-REM (NREM) and Rapid Eye Movement (REM) sleep. Each cycle of NREM and REM sleep takes around 90 to 110 minutes.
Stage 1 is the lightest stage of sleep, where the sleeper may experience sudden muscle contractions and a sense of falling. The brain waves during this stage are called theta waves.
In Stage 2, eye movement stops, and brain waves become lower. Sleep spindles and K complexes, which are rapid bursts of 12-14 Hz waves, are seen during this stage.
Stages 3 and 4 are referred to as deep sleep of delta sleep. There is no eye movement of muscle activity during these stages. Children may experience night terrors of somnambulism during these stages.
REM sleep is characterized by rapid, shallow breathing and rapid, jerky eye movements. Most dreaming occurs during REM sleep.
Overall, the different stages of sleep are important for the body to rest and rejuvenate. Understanding these stages can help individuals improve their sleep quality and overall health.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 55
Incorrect
-
What hormone is secreted by the posterior pituitary gland?
Your Answer:
Correct Answer: Antidiuretic hormone
Explanation:The hormone ADH (also known as vasopressin) is released from the posterior pituitary gland and promotes water retention and increased blood pressure by constricting arterioles. Conversely, the hormones ACTH, growth hormone, luteinizing hormone, and thyroid stimulating hormone are all released from the anterior pituitary gland and have various effects on the body, such as stimulating hormone production in the adrenal glands, promoting bone and muscle growth, regulating sex gland function, and stimulating the release of thyroxine.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 56
Incorrect
-
What type of MRI scan is available?
Your Answer:
Correct Answer: DTI
Explanation:Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 57
Incorrect
-
What is the most probable outcome of the occlusion of the main trunk of the middle cerebral artery?
Your Answer:
Correct Answer: Hemiparesis of the contralateral face and limbs
Explanation:Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 58
Incorrect
-
What is the primary component of Hirano bodies?
Your Answer:
Correct Answer: Actin
Explanation:Actin is the primary component of Hirano bodies, which are indicative of neurodegeneration but lack specificity.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 59
Incorrect
-
A middle-aged patient comes to your clinic with a complaint of double vision that they believe is caused by a new medication you prescribed. They report experiencing both vertical and torsional diplopia. During the examination, you observe that they are unable to move their left eye downwards and outwards. Which cranial nerve is most likely affected?
Your Answer:
Correct Answer: IV
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 60
Incorrect
-
What are some common symptoms that are typically observed in the initial phases of Alzheimer's disease?
Your Answer:
Correct Answer: Hippocampal atrophy
Explanation:The medial temporal lobe, comprising the hippocampus and parahippocampal gyrus, exhibits the earliest neuropathological alterations.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 61
Incorrect
-
What waveform represents a frequency range of 12-30Hz?
Your Answer:
Correct Answer: Beta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 62
Incorrect
-
What is a true statement about cerebrovascular accidents?
Your Answer:
Correct Answer: Cerebral infarction commonly occurs during sleep
Explanation:It is widely acknowledged that women who have pre-existing cardiovascular disease should avoid taking oral contraceptives due to the increased risk of stroke and DVTs.
Cerebrovascular accidents (CVA), also known as strokes, are defined by the World Health Organization as a sudden onset of focal neurological symptoms lasting more than 24 hours and presumed to be of vascular origin. Strokes can be caused by either infarction of hemorrhage, with infarction being more common. Hemorrhagic strokes tend to be more severe. Intracranial hemorrhage can be primary, caused mainly by hypertension, of subarachnoid, caused by the rupture of an aneurysm of angioma. Primary intracranial hemorrhage is most common in individuals aged 60-80 and often occurs during exertion. Infarction can be caused by thrombosis of embolism, with thrombosis being more common. Atherosclerosis, often caused by hypertension, is the main cause of infarction. CT scanning is the preferred diagnostic tool during the first 48 hours after a stroke as it can distinguish between infarcts and hemorrhages. Recovery from embolism is generally quicker and more complete than from thrombosis due to the availability of collateral channels.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 63
Incorrect
-
What is the most prevalent type of primary brain tumor found in adults?
Your Answer:
Correct Answer: Glioblastoma multiforme
Explanation:Cerebral Tumours
The most common brain tumours in adults, listed in order of frequency, are metastatic tumours, glioblastoma multiforme, anaplastic astrocytoma, and meningioma. On the other hand, the most common brain tumours in children, listed in order of frequency, are astrocytoma, medulloblastoma, and ependymoma.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 64
Incorrect
-
Are athetoid movements commonly associated with basal ganglia dysfunction rather than cerebellar dysfunction?
Your Answer:
Correct Answer: Athetoid movements
Explanation:Abnormal movements known as athetoid movements are commonly associated with issues in the basal ganglia.
Cerebellar Dysfunction: Symptoms and Signs
Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).
Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.
Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.
Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 65
Incorrect
-
From which region is the largest amount of norepinephrine released?
Your Answer:
Correct Answer: Locus coeruleus
Explanation:Norepinephrine: Synthesis, Release, and Breakdown
Norepinephrine is synthesized from tyrosine through a series of enzymatic reactions. The first step involves the conversion of tyrosine to L-DOPA by tyrosine hydroxylase. L-DOPA is then converted to dopamine by DOPA decarboxylase. Dopamine is further converted to norepinephrine by dopamine beta-hydroxylase. Finally, norepinephrine is converted to epinephrine by phenylethanolamine-N-methyltransferase.
The primary site of norepinephrine release is the locus coeruleus, also known as the blue spot, which is located in the pons. Once released, norepinephrine is broken down by two enzymes: catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). These enzymes play a crucial role in regulating the levels of norepinephrine in the body.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 66
Incorrect
-
A 3-year-old girl wakes up crying in the middle of the night. This typically occurs shortly after she has fallen asleep. Her parents report that she sits up in bed and appears to be awake but does not acknowledge them. The episodes last for a few minutes before the child falls back asleep. The parents have checked her pulse during these episodes and note that it is very rapid. This started happening around six months ago and lasted for about two weeks before resolving on its own. What is the likely diagnosis?
Your Answer:
Correct Answer: Night terrors
Explanation:Night terrors are a type of sleep disorder that typically occur during the first few hours of sleep. They are characterized by sudden and intense feelings of fear, panic, of terror that can cause the person to scream, thrash around, of even try to escape from their bed. Unlike nightmares, which occur during REM sleep and are often remembered upon waking, night terrors occur during non-REM sleep and are usually not remembered. Night terrors are most common in children, but can also occur in adults. They are thought to be caused by a combination of genetic and environmental factors, and may be triggered by stress, anxiety, of sleep deprivation. Treatment for night terrors may include improving sleep hygiene, reducing stress, and in some cases, medication.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 67
Incorrect
-
In which region of the brain is the 'Arbor vitae' situated?
Your Answer:
Correct Answer: Cerebellum
Explanation:Brain Anatomy
The brain is a complex organ with various regions responsible for different functions. The major areas of the cerebrum (telencephalon) include the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, corpus callosum, fornix, anterior commissure, and striatum. The cerebrum is responsible for complex learning, language acquisition, visual and auditory processing, memory, and emotion processing.
The diencephalon includes the thalamus, hypothalamus and pituitary, pineal gland, and mammillary body. The thalamus is a major relay point and processing center for all sensory impulses (excluding olfaction). The hypothalamus and pituitary are involved in homeostasis and hormone release. The pineal gland secretes melatonin to regulate circadian rhythms. The mammillary body is a relay point involved in memory.
The cerebellum is primarily concerned with movement and has two major hemispheres with an outer cortex made up of gray matter and an inner region of white matter. The cerebellum provides precise timing and appropriate patterns of skeletal muscle contraction for smooth, coordinated movements and agility needed for daily life.
The brainstem includes the substantia nigra, which is involved in controlling and regulating activities of the motor and premotor cortical areas for smooth voluntary movements, eye movement, reward seeking, the pleasurable effects of substance misuse, and learning.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 68
Incorrect
-
What is the most probable diagnosis for a patient undergoing neuropsychiatric evaluation with a CT scan revealing atrophy of the head of the caudate nucleus?
Your Answer:
Correct Answer: Huntington's disease
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 69
Incorrect
-
Which waveform represents a frequency that is less than 4 Hz?
Your Answer:
Correct Answer: Delta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 70
Incorrect
-
What condition has been associated with decreased small interneurons in cortical layer II of the prefrontal cortex, which are believed to be related to the GABA system?
Your Answer:
Correct Answer: Schizophrenia
Explanation:The key to answering this question is identifying that it pertains to the prefrontal cortex, which is strongly linked to schizophrenia. Other conditions that are associated with abnormalities in this region include ADHD and bipolar disorder. Schizophrenia is characterized by changes in GABA function, including both release and uptake. Additionally, a decrease in small interneurons in cortical layer II of the prefrontal cortex is believed to contribute to these alterations. Sedvall’s 2002 work on the pathophysiological mechanisms of schizophrenia provides further insight into these issues.
Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 71
Incorrect
-
Can you identify the neurotransmitter that is often studied and also referred to as prolactin-inhibiting factor (PIF)?
Your Answer:
Correct Answer: Dopamine
Explanation:Prolactin secretion from the anterior pituitary gland is inhibited by dopamine, which is also referred to as prolactin-inhibiting factor (PIF) and prolactin-inhibiting hormone (PIH). The reason why antipsychotic medications are linked to hyperprolactinaemia is due to the antagonism of dopamine receptors. On the other hand, serotonin and melatonin seem to stimulate prolactin secretion. While animal studies have indicated that adrenaline and noradrenaline can decrease prolactin secretion, their effect is not as significant as that of dopamine.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 72
Incorrect
-
Which area is typically affected by an infarction that leads to locked-in syndrome?
Your Answer:
Correct Answer: Pons
Explanation:Locked-in Syndrome: A Condition of Total Dependence on Caregivers
Locked-in syndrome is a medical condition that renders a patient mute, quadriplegic, bedridden, and completely reliant on their caregivers. Despite their physical limitations, patients with locked-in syndrome remain alert and cognitively intact, and can communicate by moving their eyes. This condition typically occurs as a result of an infarction of the pons or medulla, which is often caused by an embolus blocking a branch of the basilar artery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 73
Incorrect
-
The nomenclature of PrPSc, the disease-linked form of mammalian prion protein PrP, was derived from a long-observed prion disease in which animal?
Your Answer:
Correct Answer: Sheep
Explanation:The term PrPSc originated from scrapie, a prion disease that affects sheep. In humans, the normal isoform of prion protein is PrPC, while the abnormal form is known as PrPres (protease-resistant) of PrPSc. Scrapie has been observed in sheep for over 300 years, while BSE in cattle was only identified in the 1980s. Feline spongiform encephalopathy (FSE) is a prion disease that affects cats, and Chronic wasting disease (CWD) is a similar condition that affects deer.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 74
Incorrect
-
In which region of the brain is the ventral tegmental area situated?
Your Answer:
Correct Answer: Midbrain
Explanation:The Role of the Ventral Tegmental Area in Reward and Pleasure
The midbrain contains a cluster of dopaminergic cells known as the ventral tegmental area (VTA), which plays a crucial role in the experience of reward and pleasure. These cells are involved in the release of dopamine, a neurotransmitter that is associated with feelings of pleasure and motivation. The VTA is activated in response to various stimuli, such as food, sex, and drugs, and is responsible for the pleasurable sensations that accompany these experiences. Dysfunction in the VTA has been linked to addiction and other disorders related to reward processing. Understanding the role of the VTA in reward and pleasure is essential for developing effective treatments for these conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 75
Incorrect
-
What waveform represents a frequency range of 4-8 Hz?
Your Answer:
Correct Answer: Theta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 76
Incorrect
-
Which brain structure is located next to Broca's and Wernicke's areas?
Your Answer:
Correct Answer: Sylvian sulcus
Explanation:Understanding the sylvian (lateral) sulcus is crucial in comprehending the perisylvian language area and distinguishing between perisylvian and extrasylvian types of aphasias.
Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 77
Incorrect
-
What is the breakdown product of serotonin?
Your Answer:
Correct Answer: 5-Hydroxyindoleacetic acid
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 78
Incorrect
-
A woman comes to the clinic with a sudden loss of vision in both eyes. There are no abnormalities in the front part of the eye of the back part of the eye, and her pupils react normally to light. What is the most probable location of the blockage in the artery?
Your Answer:
Correct Answer: Posterior cerebral arteries
Explanation:Bilateral infarction in the territory supplied by the distal posterior cerebral arteries can lead to cortical blindness with preserved pupillary reflex. This condition is often accompanied by Anton’s syndrome, where patients are unaware of their blindness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 79
Incorrect
-
What is a true statement about the neocortex?
Your Answer:
Correct Answer: It contains both pyramidal and nonpyramidal cells
Explanation:The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 80
Incorrect
-
An agitated elderly patient requires restraint. Following the restraint, your examination of the patient reveals an inability to shrug the shoulders. Which nerve is most likely to have been damaged?
Accessory
91%
Hypoglossal
4%
Abducent
4%
Oculomotor
0%
Glossopharyngeal
1%
This elderly patient has most likely suffered a traumatic injury to the accessory nerve.Your Answer:
Correct Answer: Accessory
Explanation:It is probable that this individual has experienced a traumatic injury affecting the accessory nerve.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 81
Incorrect
-
What is a pathological characteristic observed in individuals with Alzheimer's disease?
Your Answer:
Correct Answer: Hyperphosphorylated tau
Explanation:Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 82
Incorrect
-
Which receptors are affected by fluoxetine that are believed to be responsible for causing insomnia?
Your Answer:
Correct Answer: 5-HT2
Explanation:Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 83
Incorrect
-
What SPECT finding is indicative of Alzheimer's disease?
Your Answer:
Correct Answer: Decreased temporal perfusion
Explanation:Given the medial temporal lobe atrophy commonly observed in Alzheimer’s disease, a reduction in perfusion of the temporal lobe would be anticipated.
Alzheimer’s disease can be differentiated from healthy older individuals by using SPECT imaging to detect temporal and parietal hypoperfusion, according to studies such as one conducted by W. Jagust in 2001. Additionally, SPECT imaging has proven to be a useful tool in distinguishing between Alzheimer’s disease and Lewy body dementia, as demonstrated in a study by Vaamonde-Gamo in 2005. The image provided shows a SPECT scan of a patient with Alzheimer’s disease compared to one with Lewy body dementia, with the latter showing lower perfusion in the occipital cortex and the former showing lower perfusion in medial temporal areas.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 84
Incorrect
-
Which type of nerve fiber lacks a myelin sheath?
Your Answer:
Correct Answer: C
Explanation:Primary Afferent Axons: Conveying Information about Touch and Pain
Primary afferent axons play a crucial role in conveying information about touch and pain from the surface of the body to the spinal cord and brain. These axons can be classified into four types based on their functions: A-alpha (proprioception), A-beta (touch), A-delta (pain and temperature), and C (pain, temperature, and itch). While all A axons are myelinated, C fibers are unmyelinated.
A-delta fibers are responsible for the sharp initial pain, while C fibers are responsible for the slow, dull, longer-lasting second pain. Understanding the different types of primary afferent axons and their functions is essential in diagnosing and treating various sensory disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 85
Incorrect
-
What is the entity that carries out phagocytosis in the central nervous system?
Your Answer:
Correct Answer: Microglia
Explanation:Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 86
Incorrect
-
Which statement about the dopamine pathways is incorrect?
Your Answer:
Correct Answer: The tuberoinfundibular pathway connects the hypothalamus to the pineal gland
Explanation:The tuberoinfundibular pathway links the hypothalamus with the pituitary gland, rather than the pineal gland.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 87
Incorrect
-
What is included in the basal ganglia?
Your Answer:
Correct Answer: Putamen
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 88
Incorrect
-
Which of the options below does not belong to the category of small molecule neurotransmitters?
Your Answer:
Correct Answer: Prolactin
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 89
Incorrect
-
What is the most accurate way to describe the speech of an individual with Broca's aphasia?
Your Answer:
Correct Answer: Non fluent aphasia
Explanation:Broca’s aphasia is also known as non-fluent aphasia, while Wernicke’s aphasia is referred to as fluent aphasia.
Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 90
Incorrect
-
Which structure secretes adrenocorticotropic hormone in the HPA axis?
Your Answer:
Correct Answer: Pituitary
Explanation:The anterior lobe of the pituitary gland secretes adrenocorticotropic hormone.
HPA Axis Dysfunction in Mood Disorders
The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.
In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.
Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.
In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.
Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 91
Incorrect
-
From which amino acid is noradrenaline (norepinephrine) derived?
Your Answer:
Correct Answer: Tyrosine
Explanation:Catecholamines are a group of chemical compounds that have a distinct structure consisting of a benzene ring with two hydroxyl groups, an intermediate ethyl chain, and a terminal amine group. These compounds play an important role in the body and are involved in various physiological processes. The three main catecholamines found in the body are dopamine, adrenaline, and noradrenaline. All of these compounds are derived from the amino acid tyrosine. Overall, catecholamines are essential for maintaining proper bodily functions and are involved in a wide range of physiological processes.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 92
Incorrect
-
What proportion of all multiple sclerosis cases is accounted for by primary progressive multiple sclerosis?
Your Answer:
Correct Answer: 10%
Explanation:Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 93
Incorrect
-
Under normal circumstances, which stage of sleep is responsible for the largest portion of total sleep time?
Your Answer:
Correct Answer: Stage II
Explanation:Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 94
Incorrect
-
A child is referred to a neurologist. On entering the neurologist's room, the child is observed to have a broad-based gait. When introduced, the child's speech is noted to be abnormal. When the child attempts to shake the doctor's hand, a tremor is observed. Which area of the brain is likely to be dysfunctional?
Your Answer:
Correct Answer: Cerebellum
Explanation:Cerebellar Dysfunction: Symptoms and Signs
Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).
Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.
Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.
Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 95
Incorrect
-
What is the relationship between depression and the HPA axis?
Your Answer:
Correct Answer: Major depression is associated with increased levels of corticotropin-releasing factor in the CSF
Explanation:HPA Axis Dysfunction in Mood Disorders
The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.
In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.
Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.
In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.
Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 96
Incorrect
-
What is a true statement about the planum temporale?
Your Answer:
Correct Answer: It consists of secondary auditory cortex
Explanation:Cerebral Asymmetry in Planum Temporale and its Implications in Language and Auditory Processing
The planum temporale, a triangular region in the posterior superior temporal gyrus, is a highly lateralized brain structure involved in language and music processing. Studies have shown that the planum temporale is up to ten times larger in the left cerebral hemisphere than the right, with this asymmetry being more prominent in men. This asymmetry can be observed in gestation and is present in up to 70% of right-handed individuals.
Recent research suggests that the planum temporale also plays an important role in auditory processing, specifically in representing the location of sounds in space. However, reduced planum temporale asymmetry has been observed in individuals with dyslexia, stuttering, and schizophrenia. These findings highlight the importance of cerebral asymmetry in the planum temporale and its implications in language and auditory processing.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 97
Incorrect
-
Which condition is typically associated with a flattened EEG trace?
Your Answer:
Correct Answer: Huntington's
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 98
Incorrect
-
Which symptom is unlikely to be the first one noticed in a person with normal pressure hydrocephalus?
Your Answer:
Correct Answer: Headache
Explanation:Headache and other symptoms commonly associated with hydrocephalus may not be present in normal pressure hydrocephalus due to the fact that intracranial pressure does not typically remain elevated.
Normal Pressure Hydrocephalus
Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.
The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 99
Incorrect
-
What is the typical artery that is blocked in cases of Alexia without agraphia?
Your Answer:
Correct Answer: Posterior cerebral artery
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 100
Incorrect
-
Which statement about multiple sclerosis is incorrect?
Your Answer:
Correct Answer: It is more common in males
Explanation:The statement MS is more common in females is actually correct.
Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 101
Incorrect
-
Which condition has been eliminated due to the use of highly active antiretroviral therapy (HAART) in individuals who are HIV positive?
Your Answer:
Correct Answer: Toxoplasmosis
Explanation:The use of HAART has led to a complete elimination of new cases of toxoplasmosis in individuals who are HIV positive. Studies conducted on the Edinburgh cohort have revealed a significant decrease in the occurrence of CMV by 50% during autopsy, a 68% reduction in HIVE, and complete eradication of toxoplasmosis. However, there has been a slight increase in the incidence of PML and lymphoma in this group and other samples.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 102
Incorrect
-
What is a substance that activates GABA-B receptors called?
Your Answer:
Correct Answer: Baclofen
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 103
Incorrect
-
A 56-year-old woman experiences a stroke caused by a ruptured berry aneurysm in the right middle cerebral artery. She frequently collides with objects but denies any visual impairment.
What is the probable diagnosis?Your Answer:
Correct Answer: Anton syndrome
Explanation:Anton-Babinski syndrome, also known as Anton syndrome of Anton’s blindness, is a rare condition caused by brain damage in the occipital lobe. Individuals with this syndrome are unable to see due to cortical blindness, but they insist that they can see despite evidence to the contrary. This is because they confabulate, of make up explanations for their inability to see. The syndrome is typically a result of a stroke, but can also occur after a head injury.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 104
Incorrect
-
What is a true statement about Wernicke's aphasia?
Your Answer:
Correct Answer: Speech is characteristically meaningless
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 105
Incorrect
-
The substance that boosts hunger and is produced by the hypothalamus is:
Your Answer:
Correct Answer: Neuropeptide Y
Explanation:Appetite Control Hormones
The regulation of appetite is influenced by various hormones in the body. Neuropeptide Y, which is produced by the hypothalamus, stimulates appetite. On the other hand, leptin, which is produced by adipose tissue, suppresses appetite. Ghrelin, which is mainly produced by the gut, increases appetite. Cholecystokinin (CCK), which is also produced by the gut, reduces appetite. These hormones play a crucial role in maintaining a healthy balance of food intake and energy expenditure.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 106
Incorrect
-
A 60-year-old patient complains of headaches which are worse in the morning and have been present for 2 months. They have been told by their GP it is probably 'tension headache'. Which of the following symptoms is suggestive of a more sinister pathology?
Your Answer:
Correct Answer: Pain worse on bending down
Explanation:Indicators of a potentially serious headache are:
– Developing a headache for the first time after the age of 50
– Sudden and severe headache (often described as a thunderclap headache)
– Accompanying symptoms such as redness in the eye and seeing halos around lights
– Headache that gets worse with physical activity of straining (such as during a Valsalva maneuver)Cerebral Tumours
The most common brain tumours in adults, listed in order of frequency, are metastatic tumours, glioblastoma multiforme, anaplastic astrocytoma, and meningioma. On the other hand, the most common brain tumours in children, listed in order of frequency, are astrocytoma, medulloblastoma, and ependymoma.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 107
Incorrect
-
What is the function of the Nissl substance within a neuron?
Your Answer:
Correct Answer: Protein synthesis
Explanation:Melanin
Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 108
Incorrect
-
What food item is rich in choline?
Your Answer:
Correct Answer: Egg yolk
Explanation:Choline, which is essential for the synthesis of the neurotransmitter acetylcholine, can be obtained in significant quantities from vegetables, seeds, egg yolk, and liver. However, it is only present in small amounts in most fruits, egg whites, and many beverages.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 109
Incorrect
-
What stage of sleep do most adults spend the majority of their time in during the night?
Your Answer:
Correct Answer: Stage 2
Explanation:– Dement and Kleitman (1957) classified sleep into five stages.
– Normal adults spend the majority of their sleep in Stage 2 (55%).
– Non-REM sleep is divided into four stages: Stage 1 (5%), Stage 2 (55%), Stage 3 (5%), and Stage 4 (10%).
– REM sleep is Stage 5 and normal adults spend 25% of their sleep in this stage. -
This question is part of the following fields:
- Neurosciences
-
-
Question 110
Incorrect
-
Which of the following indicates the presence of a dominant parietal lobe injury?
Your Answer:
Correct Answer: Finger agnosia
Explanation:Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 111
Incorrect
-
Which area of the cerebellum is responsible for regulating precise and delicate movements of the body?
Your Answer:
Correct Answer: Spinocerebellum
Explanation:The Cerebellum: Anatomy and Function
The cerebellum is a part of the brain that consists of two hemispheres and a median vermis. It is separated from the cerebral hemispheres by the tentorium cerebelli and connected to the brain stem by the cerebellar peduncles. Anatomically, it is divided into three lobes: the flocculonodular lobe, anterior lobe, and posterior lobe. Functionally, it is divided into three regions: the vestibulocerebellum, spinocerebellum, and cerebrocerebellum.
The vestibulocerebellum, located in the flocculonodular lobe, is responsible for balance and spatial orientation. The spinocerebellum, located in the medial section of the anterior and posterior lobes, is involved in fine-tuned body movements. The cerebrocerebellum, located in the lateral section of the anterior and posterior lobes, is involved in planning movement and the conscious assessment of movement.
Overall, the cerebellum plays a crucial role in motor coordination and control. Its different regions and lobes work together to ensure smooth and precise movements of the body.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 112
Incorrect
-
What is the primary neurotransmitter in the brain that has an inhibitory effect?
Your Answer:
Correct Answer: GABA
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 113
Incorrect
-
What is the enzyme responsible for converting 5-hydroxytryptophan into serotonin?
Your Answer:
Correct Answer: L-aromatic amino acid decarboxylase
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 114
Incorrect
-
How would you describe the condition of a patient who, after experiencing a stroke, is unable to identify familiar objects despite having no sensory impairment?
Your Answer:
Correct Answer: Visual agnosia
Explanation:Visual Agnosia: Inability to Recognize Familiar Objects
Visual agnosia is a neurological condition that affects a person’s ability to recognize familiar objects, even though their sensory apparatus is functioning normally. This disorder can be further classified into different subtypes, with two of the most important being prosopagnosia and simultanagnosia.
Prosopagnosia is the inability to identify faces, which can make it difficult for individuals to recognize family members, friends, of even themselves in a mirror. Simultanagnosia, on the other hand, is the inability to recognize a whole image, even though individual details may be recognized. This can make it challenging for individuals to understand complex scenes of navigate their environment.
Visual agnosia can be caused by various factors, including brain damage from injury of disease. Treatment options for this condition are limited, but some individuals may benefit from visual aids of cognitive therapy to improve their ability to recognize objects.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 115
Incorrect
-
Which type of brain lesion is typically associated with Alexia without agraphia?
Your Answer:
Correct Answer: Posterior cerebral artery
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 116
Incorrect
-
What are some common symptoms that are typically observed in the initial phases of Alzheimer's disease?
Your Answer:
Correct Answer: Hippocampal atrophy
Explanation:The medial temporal lobe, comprising the hippocampus and parahippocampal gyrus, exhibits the earliest neuropathological alterations.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 117
Incorrect
-
What is the main structural component of alpha-synuclein?
Your Answer:
Correct Answer: Lewy bodies
Explanation:Parkinson’s Disease Pathology
Parkinson’s disease is a neurodegenerative disorder that affects the central nervous system. The pathology of Parkinson’s disease is very similar to that of Lewy body dementia. The macroscopic features of Parkinson’s disease include pallor of the substantia nigra (midbrain) and locus coeruleus (pons). The microscopic changes include the presence of Lewy bodies, which are intracellular aggregates of alpha-synuclein. Additionally, there is a loss of dopaminergic cells from the substantia nigra pars compacta. These changes contribute to the motor symptoms of Parkinson’s disease, such as tremors, rigidity, and bradykinesia. Understanding the pathology of Parkinson’s disease is crucial for developing effective treatments and improving the quality of life for those affected by this condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 118
Incorrect
-
What is a true statement about sigma waves in relation to EEG?
Your Answer:
Correct Answer: They are absent in familial fatal insomnia
Explanation:Sigma waves are typically observed during stage 2 sleep and are considered a normal occurrence during sleep. They usually follow muscle twitches and are believed to help maintain a peaceful state during sleep. These waves are produced in the reticular nucleus of the thalamus and arise from the interplay between the thalamus and the cortex. However, in familial fatal insomnia (a prion disease), the absence of sigma waves is a characteristic feature.
Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 119
Incorrect
-
Which of the following is classified as a large molecule neurotransmitter?
Your Answer:
Correct Answer: Oxytocin
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 120
Incorrect
-
Which neuroimaging technique that maps cortical activation uses the non-invasive BOLD method?
Your Answer:
Correct Answer: Functional MRI (fMRI)
Explanation:The BOLD technique is used by fMRI to non-invasively map cortical activation, while PET and SPECT require the administration of a radioactive isotope and are invasive. Although all three magnetic imaging techniques are non-invasive, fMRI stands out for its use of the BOLD technique.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 121
Incorrect
-
What statement accurately describes ionotropic receptors?
Your Answer:
Correct Answer: GABA-A is an example of an ionotropic receptor
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 122
Incorrect
-
Which condition is commonly linked to pronator drift?
Your Answer:
Correct Answer: Spasticity
Explanation:Spasticity is the correct answer as pronator drift is a sign of upper motor neuron lesions, while the other options are indicative of lower motor neuron lesions.
Understanding Pronator Drift in Neurological Examinations
Pronator drift is a neurological sign that is commonly observed during a medical examination. This sign is elicited by asking the patient to flex their arms forward at a 90-degree angle to the shoulders, supinate their forearms, close their eyes, and maintain the position. In a normal scenario, the position should remain unchanged. However, in some cases, one arm may be seen to pronate.
Pronator drift is typically caused by an upper motor neuron lesion. There are various underlying conditions that can lead to this type of lesion, including stroke, multiple sclerosis, and brain tumors. The presence of pronator drift can help healthcare professionals to identify the location and severity of the lesion, as well as to determine the appropriate course of treatment.
Overall, understanding pronator drift is an important aspect of neurological examinations. By recognizing this sign and its underlying causes, healthcare professionals can provide more accurate diagnoses and develop effective treatment plans for their patients.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 123
Incorrect
-
Which condition is most commonly associated with Klüver-Bucy syndrome?
Your Answer:
Correct Answer: Alzheimer's disease
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 124
Incorrect
-
Which of the following is believed to be caused by the obstruction of D-2 receptors in the mesolimbic pathway?
Your Answer:
Correct Answer: The therapeutic effects of antipsychotics in schizophrenia
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 125
Incorrect
-
What EEG waveform corresponds to a frequency range of 12-30Hz?
Your Answer:
Correct Answer: Beta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 126
Incorrect
-
What is the precursor amino acid for dopamine synthesis?
Your Answer:
Correct Answer: Tyrosine
Explanation:Tyrosine is converted to L-DOPA by the enzyme tyrosine hydroxylase. L-DOPA is then converted to dopamine by the enzyme dopa decarboxylase.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 127
Incorrect
-
What factors contribute to the potency of a drug?
Your Answer:
Correct Answer: Efficacy and affinity
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 128
Incorrect
-
Which pathway is believed to be responsible for the development of negative symptoms in schizophrenia due to the blockage of D-2 receptors?
Your Answer:
Correct Answer: The mesocortical pathway
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 129
Incorrect
-
What structure is situated in the anterior part of the brain?
Your Answer:
Correct Answer: Nucleus accumbens
Explanation:The nucleus accumbens is situated in the forebrain and is a component of the basal ganglia, which is one of the three major divisions of the brain. The remaining choices refer to structures located in the midbrain.
The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 130
Incorrect
-
If a man experiences a severe road traffic accident resulting in substantial damage to his frontal lobe, what symptoms would you anticipate him to exhibit?
Your Answer:
Correct Answer: Contralateral hemiplegia
Explanation:Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 131
Incorrect
-
A 42 year old, overweight woman presents with recurring episodes of one-sided vision loss accompanied by pain over the last 24 months. She is curious if her use of fluoxetine, which you prescribed for her depression, could be a contributing factor. What is your primary suspicion regarding her symptoms?
Your Answer:
Correct Answer: Multiple sclerosis
Explanation:The symptoms experienced by the woman are most indicative of optic neuritis, which is characterized by inflammation of the optic nerve where it connects to the eye. This typically results in temporary loss of vision in one eye, accompanied by pain during eye movement. Optic neuritis is commonly associated with multiple sclerosis. It is unlikely that the woman is experiencing an arterial occlusion, as this would cause permanent and painless vision loss. A pituitary adenoma would affect both eyes and result in permanent vision loss. The possibility of a somatoform disorder is unlikely, as the women’s symptoms align with a recognized medical diagnosis. Endophthalmitis is a serious condition that can cause permanent vision loss and requires immediate medical attention.
Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 132
Incorrect
-
What type of speech disorder is commonly associated with spasticity and would be most likely to be observed in a patient?
Your Answer:
Correct Answer: Pseudobulbar palsy
Explanation:Dysarthria is a speech disorder that affects the volume, rate, tone, of quality of spoken language. There are different types of dysarthria, each with its own set of features, associated conditions, and localisation. The types of dysarthria include spastic, flaccid, hypokinetic, hyperkinetic, and ataxic.
Spastic dysarthria is characterised by explosive and forceful speech at a slow rate and is associated with conditions such as pseudobulbar palsy and spastic hemiplegia.
Flaccid dysarthria, on the other hand, is characterised by a breathy, nasal voice and imprecise consonants and is associated with conditions such as myasthenia gravis.
Hypokinetic dysarthria is characterised by slow, quiet speech with a tremor and is associated with conditions such as Parkinson’s disease.
Hyperkinetic dysarthria is characterised by a variable rate, inappropriate stoppages, and a strained quality and is associated with conditions such as Huntington’s disease, Sydenham’s chorea, and tardive dyskinesia.
Finally, ataxic dysarthria is characterised by rapid, monopitched, and slurred speech and is associated with conditions such as Friedreich’s ataxia and alcohol abuse. The localisation of each type of dysarthria varies, with spastic and flaccid dysarthria affecting the upper and lower motor neurons, respectively, and hypokinetic, hyperkinetic, and ataxic dysarthria affecting the extrapyramidal and cerebellar regions of the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 133
Incorrect
-
What is a true statement about the prion protein (PrPc)?
Your Answer:
Correct Answer: It can be broken down by protease
Explanation:The prion protein has two forms: the normal form (PrPc) and the infectious form (PrPSc). The normal form can be broken down by proteases, while the infectious form is resistant to proteases.
Prion Protein and its Role in Disease
Prion protein is a type of infective agent that is composed of protein. It is made up of proteins called PrP, which exist in two forms: a normal form (PrPC) and an abnormal form (PrPSc). The abnormal form is resistant to protease, which means it cannot be broken down in the body. This abnormal form can change adjacent normal PrPC into the abnormal form, which is how the infection spreads.
PrPC is a normal component of cell membranes and has an alpha-helical structure. However, in PrPSc, much of the alpha-helical structure is replaced by a beta-sheet structure. This change in structure causes PrPSc to aggregate into plaques in the extracellular space of the central nervous system, disrupting normal tissue structure.
Prions cause disease by this disruption of normal tissue structure, leading to neurological symptoms and ultimately death. Understanding the structure and behavior of prion proteins is crucial in developing treatments and preventative measures for prion diseases.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 134
Incorrect
-
A 50-year-old individual has experienced a stroke resulting in aphasia, hemiplegia, and sensory impairment. What is the most probable area of the brain that has been affected?
Your Answer:
Correct Answer: Dominant middle cerebral artery
Explanation:The middle cerebral artery is the most frequent location for cerebral infarction, resulting in contralateral paralysis and sensory loss. If the dominant hemisphere is affected, language impairment such as Broca’s of Wernicke’s aphasia may occur. Bilateral anterior cerebellar artery blockage is uncommon but can lead to akinetic mutism, which is characterized by a loss of speech and movement. Non-dominant middle cerebral artery blockage can cause contralateral neglect, as well as motor and sensory dysfunction, but language is typically unaffected. The occlusion of the posterior inferior cerebellar artery can result in lateral medullary syndrome, also known as Wallenberg syndrome, which is characterized by crossed contralateral and trunk sensory deficits and ipsilateral sensory deficits affecting the face and cranial nerves. Emboli in the ophthalmic artery can cause temporary vision loss, also known as amaurosis fugax, which is more commonly caused by emboli originating in the carotid artery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 135
Incorrect
-
What is a true statement about the endocannabinoid system?
Your Answer:
Correct Answer: CB2 receptors are expressed at much lower levels in the central nervous system compared to CB1
Explanation:The Endocannabinoid System and its Role in Psychosis
The endocannabinoid system (ECS) plays a crucial role in regulating various physiological functions in the body, including cognition, sleep, energy metabolism, and inflammation. It is composed of endogenous cannabinoids, cannabinoid receptors, and proteins that transport, synthesize, and degrade endocannabinoids. The two best-characterized cannabinoid receptors are CB1 and CB2, which primarily couple to inhibitory G proteins and modulate different neurotransmitter systems in the brain.
Impairment of the ECS after cannabis consumption has been linked to an increased risk of psychotic illness. However, enhancing the ECS with cannabidiol (CBD) has shown anti-inflammatory and antipsychotic outcomes in both healthy study participants and in preliminary clinical trials on people with psychotic illness of at high risk of developing psychosis. Studies have also found increased anandamide levels in the cerebrospinal fluid and blood, as well as increased CB1 expression in peripheral immune cells of people with psychotic illness compared to healthy controls. Overall, understanding the role of the ECS in psychosis may lead to new therapeutic approaches for treating this condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 136
Incorrect
-
Which type of channel opening in the plasma membrane leads to the depolarization of a neuron?
Your Answer:
Correct Answer: Na
Explanation:Understanding Action Potentials in Neurons and Muscle Cells
The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.
To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 137
Incorrect
-
What neuroimaging result is typically seen in individuals diagnosed with obsessive compulsive disorder?
Your Answer:
Correct Answer: Hypermetabolism of orbitofrontal area
Explanation:This question is a common one, but it is worded in various ways each time.
Neuroimaging Findings in Obsessive-Compulsive Disorder (OCD)
Obsessive-compulsive disorder (OCD) is a mental disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Neuroimaging studies have been conducted to investigate the underlying neural mechanisms of OCD. Two commonly used techniques are 18 Fluorodeoxyglucose PET (FDG-PET) and Technetium-99m (99mTc)-hexamethylpropyleneamine-oxime SPECT (HMPAO-SPECT).
Studies using FDG-PET have reported increased glucose metabolism in several brain regions among OCD patients, including the orbitofrontal cortex (OFC), caudate, thalamus, prefrontal cortex, and anterior cingulate. These regions are involved in cognitive and emotional processing, decision-making, and motor control. The increased activity in these regions may contribute to the symptoms of OCD, such as repetitive behaviors and difficulty controlling intrusive thoughts.
On the other hand, studies using HMPAO-SPECT have found both increased and decreased blood flow to various brain regions in OCD patients compared to normal controls. These regions include the OFC, caudate, various areas of the cortex, and thalamus. The inconsistent findings may be due to differences in the severity and subtype of OCD, as well as the specific task of stimulus used in the imaging studies.
Overall, neuroimaging studies have provided valuable insights into the neural mechanisms of OCD. However, further research is needed to better understand the complex interactions between different brain regions and how they contribute to the development and maintenance of OCD symptoms.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 138
Incorrect
-
Which cranial nerve is solely responsible for either sensory of motor functions and does not have a combination of both?
Your Answer:
Correct Answer: Abducens
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 139
Incorrect
-
By which process is dopamine broken down?
Your Answer:
Correct Answer: Monoamine oxidase
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 140
Incorrect
-
Which hypothalamic nucleus plays the most significant role in establishing the set point for daily circadian rhythms?
Your Answer:
Correct Answer: Suprachiasmatic
Explanation:Functions of the Hypothalamus
The hypothalamus is a vital part of the brain that plays a crucial role in regulating various bodily functions. It receives and integrates sensory information about the internal environment and directs actions to control internal homeostasis. The hypothalamus contains several nuclei and fiber tracts, each with specific functions.
The suprachiasmatic nucleus (SCN) is responsible for regulating circadian rhythms. Neurons in the SCN have an intrinsic rhythm of discharge activity and receive input from the retina. The SCN is considered the body’s master clock, but it has multiple connections with other hypothalamic nuclei.
Body temperature control is mainly under the control of the preoptic, anterior, and posterior nuclei, which have temperature-sensitive neurons. As the temperature goes above 37ºC, warm-sensitive neurons are activated, triggering parasympathetic activity to promote heat loss. As the temperature goes below 37ºC, cold-sensitive neurons are activated, triggering sympathetic activity to promote conservation of heat.
The hypothalamus also plays a role in regulating prolactin secretion. Dopamine is tonically secreted by dopaminergic neurons that project from the arcuate nucleus of the hypothalamus into the anterior pituitary gland via the tuberoinfundibular pathway. The dopamine that is released acts on lactotrophic cells through D2-receptors, inhibiting prolactin synthesis. In the absence of pregnancy of lactation, prolactin is constitutively inhibited by dopamine. Dopamine antagonists result in hyperprolactinemia, while dopamine agonists inhibit prolactin secretion.
In summary, the hypothalamus is a complex structure that regulates various bodily functions, including circadian rhythms, body temperature, and prolactin secretion. Dysfunction of the hypothalamus can lead to various disorders, such as sleep-rhythm disorder, diabetes insipidus, hyperprolactinemia, and obesity.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 141
Incorrect
-
What is the term used to describe the condition where a person cannot identify faces?
Your Answer:
Correct Answer: Prosopagnosia
Explanation:Agnosia is a condition where a person loses the ability to recognize objects, persons, sounds, shapes, of smells, despite having no significant memory loss of defective senses. There are different types of agnosia, such as prosopagnosia (inability to recognize familiar faces), anosognosia (inability to recognize one’s own condition/illness), autotopagnosia (inability to orient parts of the body), phonagnosia (inability to recognize familiar voices), simultanagnosia (inability to appreciate two objects in the visual field at the same time), and astereoagnosia (inability to recognize objects by touch).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 142
Incorrect
-
Which structure is most likely to show signs of atrophy in a patient with Alzheimer's disease?
Your Answer:
Correct Answer: Hippocampus
Explanation:Alzheimer’s disease often results in the shrinkage of the hippocampus, which is a component of the limbic system and is responsible for the formation and retention of long-term memories.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 143
Incorrect
-
If a certain nerve is damaged, which reflex may not occur during the jaw jerk test?
Your Answer:
Correct Answer: Trigeminal
Explanation:Cranial Nerve Reflexes
When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:
– Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Jaw jerk: involves the trigeminal nerve (sensory and motor).
– Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
– Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 144
Incorrect
-
What is the outcome of bilateral dysfunction in the medial temporal lobes?
Your Answer:
Correct Answer: Klüver-Bucy syndrome
Explanation:Periods of hypersomnia and altered behavior are characteristic of Kleine-Levin syndrome.
Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 145
Incorrect
-
An older woman presents to the emergency department with sudden onset of left leg dysfunction, urinary incontinence, and abulia. As her time in the department progresses, her left arm also becomes affected. She has a history of vascular disease. Which artery do you suspect is involved?
Your Answer:
Correct Answer: Anterior cerebral artery
Explanation:When there is a blockage in the anterior cerebral artery, the legs are typically impacted more than the arms. Additionally, a common symptom is abulia, which is a lack of determination of difficulty making firm decisions.
Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 146
Incorrect
-
In which region of the brain are most dopamine neurons found?
Your Answer:
Correct Answer: Substantia nigra
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 147
Incorrect
-
A 40 year old female is admitted to the ward with a diagnosis of depression. On admission the doctor notes skin changes consistent with erythema nodosum and also notes that the patient complains of being short of breath. Unfortunately the lady commits suicide shortly after admission. A post-mortem biopsy reveals Asteroid bodies. Which of the following diagnosis would you most suspect?:
Your Answer:
Correct Answer: Sarcoidosis
Explanation:Pathology Findings in Psychiatry
There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.
Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.
Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.
Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.
Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.
LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.
Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.
Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 148
Incorrect
-
Which condition can be diagnosed based on an atypical tonsillar biopsy result?
Your Answer:
Correct Answer: Variant CJD
Explanation:To confirm a diagnosis of variant CJD, a tonsillar biopsy is performed as it is the only form of CJD that impacts the lymph nodes.
Creutzfeldt-Jakob Disease: Differences between vCJD and CJD
Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.
vCJD:
– Longer duration from onset of symptoms to death (a year of more)
– Presents with psychiatric and behavioral symptoms before neurological symptoms
– MRI shows pulvinar sign
– EEG shows generalized slowing
– Originates from infected meat products
– Affects younger people (age 25-30)CJD:
– Shorter duration from onset of symptoms to death (a few months)
– Presents with neurological symptoms
– MRI shows bilateral anterior basal ganglia high signal
– EEG shows biphasic and triphasic waves 1-2 per second
– Originates from genetic mutation (bad luck)
– Affects older people (age 55-65)Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 149
Incorrect
-
A 62-year-old man experiences a stroke caused by a ruptured berry aneurysm in the middle cerebral artery, resulting in damage to the temporal lobe. What tests would you anticipate to show abnormalities?
Your Answer:
Correct Answer: Copying intersecting pentagons
Explanation:When the parietal lobe is not functioning properly, it can cause constructional apraxia. This condition makes it difficult for individuals to replicate the intersecting pentagons, which is a common cognitive test included in Folstein’s mini-mental state examination.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 150
Incorrect
-
From which amino acid is serotonin synthesized?
Your Answer:
Correct Answer: Tryptophan
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 151
Incorrect
-
Which of these is not a typical symptom of epilepsy in the temporal lobe?
Your Answer:
Correct Answer: Visual aura
Explanation:– Visual aura is not expected in temporal lobe epilepsy
– Visual aura may occur in occipital seizures
– Temporal lobe epilepsy is characterized by automatisms, altered consciousness, déjà vu, complex partial seizures, and olfactory hallucinations
– Occipital epilepsy can cause visual phenomena and headaches
– Occipital epilepsy should be differentiated from migraine -
This question is part of the following fields:
- Neurosciences
-
-
Question 152
Incorrect
-
What is a component of the hypothalamus in terms of neuroanatomy?
Your Answer:
Correct Answer: Mammillary bodies
Explanation:The striatum is composed of the caudate nucleus and putamen, which are part of the basal ganglia. The basal ganglia is the largest subcortical structure in the brain and consists of a group of grey matter nuclei located in the subcortical area. In contrast, the mammillary bodies are small round bodies that are part of the hypothalamus and play a crucial role in the Papez circuit as a component of the limbic system.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 153
Incorrect
-
What street drug inhibits the monoamine transporter SERT?
Your Answer:
Correct Answer: Amphetamine
Explanation:Cannabis attaches to cannabinoid receptors, while heroin acts as an opioid agonist and alters the function of dopamine.
Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 154
Incorrect
-
What EEG alteration would be anticipated when a patient who is in a relaxed state with their eyes shut is instructed to open their eyes and read a text passage in front of them?
Your Answer:
Correct Answer: The bilateral disappearance of alpha waves
Explanation:When someone is in a relaxed state with their eyes closed, alpha waves can be detected in the posterior regions of their head. However, these waves will disappear if the person becomes drowsy, concentrates on something, is stimulated, of fixates on a visual object. If the environment is dark, the alpha waves may still be present even with the eyes open.
Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 155
Incorrect
-
In which region of the monkey's cortex were mirror neurons initially identified?
Your Answer:
Correct Answer: Premotor cortex
Explanation:Visuomotor neurons known as mirror neurons are situated in the premotor cortex. These neurons were initially identified in a specific region of the premotor cortex in monkeys called area F5, but have since been observed in the inferior parietal lobule as well (Rizzolatti 2001).
Mirror Neurons: A Model for Imitation Learning
Mirror neurons are a unique type of visuomotor neurons that were first identified in the premotor cortex of monkeys in area F5. These neurons fire not only when the monkey performs a specific action but also when it observes another individual, whether it is a monkey of a human, performing a similar action. This discovery has led to the development of a model for understanding imitation learning.
Mirror neurons offer a fascinating insight into how humans and animals learn by imitation. They provide a neural mechanism that allows individuals to understand the actions of others and to replicate those actions themselves. This process is essential for social learning, as it enables individuals to learn from others and to adapt to their environment.
The discovery of mirror neurons has also led to new research in the field of neuroscience, as scientists seek to understand how these neurons work and how they can be used to improve our understanding of human behavior. As we continue to learn more about mirror neurons, we may be able to develop new therapies for individuals with social and communication disorders, such as autism.
Overall, mirror neurons are a fascinating area of research that has the potential to revolutionize our understanding of human behavior and learning. By studying these neurons, we may be able to unlock new insights into how we learn, communicate, and interact with others.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 156
Incorrect
-
Which type of injury of damage typically leads to utilization behaviour?
Your Answer:
Correct Answer: Frontal lobe
Explanation:Abnormal Motor Behaviours Associated with Utilization Behaviour
Utilization behaviour (UB) is a condition where patients exhibit exaggerated and inappropriate motor responses to environmental cues and objects. This behaviour is automatic and instrumentally correct, but not contextually appropriate. For instance, a patient may start brushing their teeth when presented with a toothbrush, even in a setting where it is not expected. UB is caused by frontal lobe lesions that result in a loss of inhibitory control.
Other motor abnormalities associated with UB include imitation behaviour, where patients tend to imitate the examiner’s behaviour, and the alien hand sign, where patients experience bizarre hand movements that they cannot control. Manual groping behaviour is also observed, where patients automatically manipulate objects placed in front of them. The grasp reflex, which is normal in infants, should not be present in children and adults. It is an automatic tendency to grip objects of stimuli, such as the examiner’s hand.
Environmental Dependency Syndrome is another condition associated with UB. It describes deficits in personal control of action and an overreliance on social and physical environmental stimuli to guide behaviour in a social context. For example, a patient may start commenting on pictures in an examiner’s office, believing it to be an art gallery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 157
Incorrect
-
What condition is identified by the combination of Parkinsonism, cerebellar ataxia, and autonomic failure?
Your Answer:
Correct Answer: Multisystem atrophy
Explanation:Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 158
Incorrect
-
What substance hinders the secretion of growth hormone in the brain?
Your Answer:
Correct Answer: Somatostatin
Explanation:Pancreatic Hormones: Functions and Production
The pancreas serves as both an exocrine and endocrine gland. Its endocrine function involves the production of four distinct hormones from the islets of Langerhans. These hormones include somatostatin, insulin, pancreatic polypeptide, and glucagon. Somatostatin is also produced by the brain, specifically the hypothalamus, where it inhibits the secretion of thyroid-stimulating hormone and growth hormone from somatotroph cells.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 159
Incorrect
-
A 65-year-old woman is experiencing memory difficulties and has been diagnosed with Alzheimer's disease. Which anatomical structure is most likely to exhibit atrophy in this scenario?
Your Answer:
Correct Answer: Hippocampus
Explanation:The frontal lobe is located at the front of the cerebrum and is responsible for managing executive functions and working memory. The hippocampus plays a role in spatial navigation and the consolidation of short term memory to long term memory, but is often the first region of the brain to suffer damage in Alzheimer’s disease. The corpus callosum is a bundle of nerve fibers that connects the left and right cerebral hemispheres, facilitating communication between them. The thalamus is a symmetrical midline structure that relays sensory and motor signals to the cerebral cortex, while also regulating consciousness, alertness, and sleep. Broca’s area, which is typically located in the inferior frontal gyrus, is a key region involved in language production.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 160
Incorrect
-
What EEG alterations are observed in individuals with Creutzfeldt-Jakob disease?
Your Answer:
Correct Answer: Periodic sharp wave complexes
Explanation:The typical EEG pattern for CJD includes periodic sharp wave complexes, which is a diagnostic criterion. Lewy body dementia may show generalized slow wave activity, but if it is more prominent in the temporal and parietal regions, it may indicate Alzheimer’s disease. Toxic encephalopathies, such as lithium toxicity, may show periodic triphasic waves on EEG. For more information, see Smith SJ’s article EEG in neurological conditions other than epilepsy: when does it help, what does it add? (2005).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 161
Incorrect
-
Which cranial nerve reflex is most likely to be impacted by a vagus nerve lesion?
Your Answer:
Correct Answer: Gag
Explanation:Cranial Nerve Reflexes
When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:
– Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Jaw jerk: involves the trigeminal nerve (sensory and motor).
– Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
– Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 162
Incorrect
-
From which structure does the mesolimbic pathway project to the nucleus accumbens?
Your Answer:
Correct Answer: Midbrain
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 163
Incorrect
-
What is the term used to describe the small, horizontally arranged folds resembling pleats on the outer surface of the cerebellum?
Your Answer:
Correct Answer: Folia
Explanation:Brain Anatomy
The brain is a complex organ with various regions responsible for different functions. The major areas of the cerebrum (telencephalon) include the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, corpus callosum, fornix, anterior commissure, and striatum. The cerebrum is responsible for complex learning, language acquisition, visual and auditory processing, memory, and emotion processing.
The diencephalon includes the thalamus, hypothalamus and pituitary, pineal gland, and mammillary body. The thalamus is a major relay point and processing center for all sensory impulses (excluding olfaction). The hypothalamus and pituitary are involved in homeostasis and hormone release. The pineal gland secretes melatonin to regulate circadian rhythms. The mammillary body is a relay point involved in memory.
The cerebellum is primarily concerned with movement and has two major hemispheres with an outer cortex made up of gray matter and an inner region of white matter. The cerebellum provides precise timing and appropriate patterns of skeletal muscle contraction for smooth, coordinated movements and agility needed for daily life.
The brainstem includes the substantia nigra, which is involved in controlling and regulating activities of the motor and premotor cortical areas for smooth voluntary movements, eye movement, reward seeking, the pleasurable effects of substance misuse, and learning.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 164
Incorrect
-
Which feature is not very useful in distinguishing between Parkinson's disease and progressive supranuclear palsy?
Your Answer:
Correct Answer: Pallor of the substantia nigra
Explanation:Both conditions exhibit pallor of the substantia nigra. However, in PSP, the locus coeruleus is typically unaffected, whereas in Parkinson’s disease, it shows pallor. Therefore, if there is pallor in this area, it would indicate Parkinson’s disease.
Pathology of Progressive Supranuclear Palsy
Progressive supranuclear palsy is a rare disorder that affects gait and balance, often accompanied by changes in mood, behavior, and dementia. The macroscopic changes observed in this condition include pallor of the substantia nigra (with sparing of the locus coeruleus), mild midbrain atrophy, atrophy of the superior cerebellar peduncles, and discolouration of the dentate nucleus. On a microscopic level, gliosis and the presence of neurofibrillary tangles and tau inclusions in both astrocytes and oligodendrocytes (coiled bodies) are observed, particularly in the substantia nigra, subthalamic nucleus, and globus pallidus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 165
Incorrect
-
What is the purpose of the blood brain barrier in keeping the blood separated from what?
Your Answer:
Correct Answer: Cerebrospinal fluid
Explanation:The blood retinal barrier refers to the membrane that separates the aqueous humour from the blood.
Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 166
Incorrect
-
In a normal, healthy person during stage III sleep, what EEG patterns would be most expected to be observed?
Your Answer:
Correct Answer: Delta waves
Explanation:Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 167
Incorrect
-
From which amino acid is norepinephrine synthesized?
Your Answer:
Correct Answer: Tyrosine
Explanation:Norepinephrine: Synthesis, Release, and Breakdown
Norepinephrine is synthesized from tyrosine through a series of enzymatic reactions. The first step involves the conversion of tyrosine to L-DOPA by tyrosine hydroxylase. L-DOPA is then converted to dopamine by DOPA decarboxylase. Dopamine is further converted to norepinephrine by dopamine beta-hydroxylase. Finally, norepinephrine is converted to epinephrine by phenylethanolamine-N-methyltransferase.
The primary site of norepinephrine release is the locus coeruleus, also known as the blue spot, which is located in the pons. Once released, norepinephrine is broken down by two enzymes: catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). These enzymes play a crucial role in regulating the levels of norepinephrine in the body.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 168
Incorrect
-
The prevention of abnormal amyloid protein formation in senile plaques is achieved through the cleavage of amyloid precursor protein by which of the following?
Your Answer:
Correct Answer: Alpha secretase
Explanation:Amyloid Precursor Protein and its Role in Alzheimer’s Disease
Amyloid precursor protein (APP) is a crucial component of amyloid plaques, which are a hallmark of Alzheimer’s disease. When APP is cleaved by beta-secretase, it produces beta-amyloid (Abeta), the primary component of senile plaques in Alzheimer’s disease. On the other hand, cleavage of APP by alpha-secretase prevents Abeta formation, leading to the production of non amyloidogenic secreted APPs products.
The accumulation of Abeta in the brain is believed to be a key factor in the development and progression of Alzheimer’s disease. Abeta peptides aggregate to form amyloid plaques, which can disrupt neuronal function and lead to cognitive decline. Therefore, understanding the mechanisms that regulate APP processing and Abeta production is crucial for developing effective treatments for Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 169
Incorrect
-
What are the eosinophilic inclusion bodies observed in Alzheimer's Disease?
Your Answer:
Correct Answer: Hirano bodies
Explanation:Pathology Findings in Psychiatry
There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.
Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.
Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.
Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.
Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.
LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.
Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.
Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 170
Incorrect
-
Which of the following is an exocannabinoid?
Your Answer:
Correct Answer: Delta-9-tetrahydrocannabinol
Explanation:The Endocannabinoid System and its Role in Psychosis
The endocannabinoid system (ECS) plays a crucial role in regulating various physiological functions in the body, including cognition, sleep, energy metabolism, and inflammation. It is composed of endogenous cannabinoids, cannabinoid receptors, and proteins that transport, synthesize, and degrade endocannabinoids. The two best-characterized cannabinoid receptors are CB1 and CB2, which primarily couple to inhibitory G proteins and modulate different neurotransmitter systems in the brain.
Impairment of the ECS after cannabis consumption has been linked to an increased risk of psychotic illness. However, enhancing the ECS with cannabidiol (CBD) has shown anti-inflammatory and antipsychotic outcomes in both healthy study participants and in preliminary clinical trials on people with psychotic illness of at high risk of developing psychosis. Studies have also found increased anandamide levels in the cerebrospinal fluid and blood, as well as increased CB1 expression in peripheral immune cells of people with psychotic illness compared to healthy controls. Overall, understanding the role of the ECS in psychosis may lead to new therapeutic approaches for treating this condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 171
Incorrect
-
What is the primary component of alpha-synuclein?
Your Answer:
Correct Answer: Lewy bodies
Explanation:Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.
Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.
In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.
Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 172
Incorrect
-
What brain area is in charge of processing sensory information such as pain, pressure, and temperature?
Your Answer:
Correct Answer: Parietal lobe
Explanation:The parietal lobes interpret sensations such as pain, pressure, and temperature. The cerebellum controls balance and voluntary movement. Executive function is managed by the frontal lobes. The occipital lobes coordinate visual processing, while the temporal lobes are responsible for language comprehension.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 173
Incorrect
-
What is the closest estimate of the membrane potential of a cell at rest?
Your Answer:
Correct Answer: -70 mV
Explanation:Understanding Action Potentials in Neurons and Muscle Cells
The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.
To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 174
Incorrect
-
Which of the following is another term for a neuropathic gait?
Your Answer:
Correct Answer: Equine gait
Explanation:Gait disorders can be caused by a variety of conditions, including neurological, muscular, and structural abnormalities. One common gait disorder is hemiplegic gait, which is characterized by unilateral weakness on the affected side, with the arm flexed, adducted, and internally rotated, and the leg on the same side in extension with plantar flexion of the foot and toes. When walking, the patient may hold their arm to one side and drag their affected leg in a semicircle (circumduction) due to weakness of leg flexors and extended foot. Hemiplegic gait is often seen in patients who have suffered a stroke.
Other gait disorders include ataxic gait, spastic gait, and steppage gait, each with their own unique characteristics and associated conditions. Accurate diagnosis and treatment of gait disorders is important for improving mobility and quality of life for affected individuals.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 175
Incorrect
-
What is a common target for deep brain stimulation (DBS) in individuals with Parkinson's disease?
Your Answer:
Correct Answer: Globus pallidus interna
Explanation:DBS is primarily used to treat Parkinson’s disease by targeting the Globus pallidus interna and subthalamic nucleus. However, for treatment-resistant depression (TRD), the subcallosal cingulate was the first area investigated for DBS, while vagal nerve stimulation has also been used. Psychosurgical treatment for refractory OCD and TRD involves targeting the anterior limb of the internal capsule. Although the caudate nucleus is part of the basal ganglia and associated with Parkinson’s disease, it is not a primary target for DBS.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 176
Incorrect
-
What is a correct statement about the blood brain barrier?
Your Answer:
Correct Answer: Nasally administered drugs can bypass the blood brain barrier
Explanation:Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 177
Incorrect
-
What is a distinguishing characteristic of normal pressure hydrocephalus?
Your Answer:
Correct Answer: Incontinence
Explanation:Headache, nausea, vomiting, papilledema, and ocular palsies are symptoms of increased intracranial pressure, which are not typically present in cases of normal pressure hydrocephalus.
Normal Pressure Hydrocephalus
Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.
The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 178
Incorrect
-
What is the causative agent of progressive multifocal leukoencephalopathy (PML), a common opportunistic CNS infection seen in individuals with AIDS?
Your Answer:
Correct Answer: John Cunningham virus (JCV)
Explanation:JCV is the cause of progressive multifocal leukoencephalopathy (PML) and typically affects individuals with weakened immune systems. Cryptococcus is a fungus that can lead to meningitis and meningoencephalitis in those with HIV/AIDS. CMV infection can be extremely dangerous for those who are immunocompromised. EBV is responsible for infectious mononucleosis, also known as glandular fever. Herpes simplex virus has two variations, HSV-1 and HSV-2, which can cause oral lesions (commonly known as cold sores) of genital lesions, respectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 179
Incorrect
-
Disinhibition is most likely to occur as a result of dysfunction in which of the following regions?
Your Answer:
Correct Answer: Right frontal lobe
Explanation:Psychiatric and behavioral disturbances in individuals with frontal lobe lesions show a pattern of lateralization. Lesions in the left hemisphere are more commonly linked to depression, especially if they affect the prefrontal cortex’s dorsolateral region. Conversely, lesions in the right hemisphere are linked to impulsivity, disinhibition, and aggression.
Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 180
Incorrect
-
You are evaluating a 72-year-old man in your office who had a stroke four weeks ago. His wife reports that he is having difficulty recognizing familiar faces, but is otherwise functioning normally. What is the most appropriate term for his condition?
Your Answer:
Correct Answer: Prosopagnosia
Explanation:Prosopagnosia is a condition where individuals are unable to recognize familiar faces, which can be caused by damage to the fusiform area of be congenital. Achromatopsia, on the other hand, is color blindness that can result from thalamus damage. Parietal lobe lesions can cause agraphesthesia, which is the inability to recognize numbers of letters traced on the palm, and astereognosis, which is the inability to recognize an item by touch. Lastly, phonagnosia is the inability to recognize familiar voices and is the auditory equivalent of prosopagnosia, although it is not as well-researched.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 181
Incorrect
-
What are the differences between CT and MRI?
Your Answer:
Correct Answer: CT is very good for imaging bone structures
Explanation:Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 182
Incorrect
-
What condition is most commonly associated with slow (<2.5 Hz) generalized spike-and-wave discharges on the EEG?
Your Answer:
Correct Answer: Atypical absence seizures
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 183
Incorrect
-
Which CNS histopathological characteristic is the most distinctive for prion diseases?
Your Answer:
Correct Answer: Spongiform (vacuolation) change
Explanation:The presence of spongiform (vacuolation) change is a highly specific indicator of prion diseases. While neuronal loss and gliosis are common in many CNS disorders, spongiform change is unique to prion diseases. This change is characterized by the appearance of vacuoles in the deep cortical layers, cerebellar cortex, of subcortical grey matter. Scar formation and acute immune responses are associated with reactive proliferation of astrocytes and microglia, respectively. In contrast, Alzheimer’s dementia is characterized by the presence of amyloid plaques.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 184
Incorrect
-
What methods are used to generate estimates of white matter tracts?
Your Answer:
Correct Answer: DTI
Explanation:Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 185
Incorrect
-
How can association tracts be defined in relation to white matter?
Your Answer:
Correct Answer: Cingulum
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 186
Incorrect
-
Which interleukin has been consistently found to be present in higher levels in individuals with depression compared to those without depression?
Your Answer:
Correct Answer: IL-6
Explanation:Inflammatory Cytokines and Mental Health
Research has suggested that an imbalance in the immune system, particularly the pro-inflammatory cytokines, may play a significant role in the development of common mental disorders. The strongest evidence is found in depression, where studies have shown increased levels of inflammatory markers, such as interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and c-reactive protein (CRP), in depressed individuals compared to healthy controls (Santoft, 2020).
While most studies have focused on the differences in inflammatory markers between depressed and healthy individuals, some have also found a correlation between higher levels of inflammation and more severe depressive symptoms. The underlying cause of this chronic low-grade inflammation is not yet fully understood, but potential factors include psychosocial stress, physical inactivity, poor diet, smoking, obesity, altered gut permeability, disturbed sleep, and vitamin D deficiency.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 187
Incorrect
-
What hormone is secreted by the gastrointestinal tract and has a significant impact on digestion and feelings of fullness?
Your Answer:
Correct Answer: Cholecystokinin
Explanation:Cholecystokinin (CCK) is a hormone produced and released by the duodenum that stimulates the secretion of digestive enzymes and bile, while also acting as an appetite suppressant. corticotropin releasing hormone is secreted by the paraventricular nucleus of the hypothalamus and triggers the release of ACTH from the pituitary gland. Met- and Leu- encephalin are peptides that play a role in pain modulation. α-endorphin is one of several endorphins that can inhibit pain and induce a feeling of euphoria.
Source: https://www.ncbi.nlm.nih.gov/pubmed/16246215
-
This question is part of the following fields:
- Neurosciences
-
-
Question 188
Incorrect
-
What pathological finding is indicative of multisystem atrophy?
Your Answer:
Correct Answer: Shrinkage of the putamen
Explanation:Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 189
Incorrect
-
Through which opening in the skull does the cranial nerve exit that is known as the superior orbital fissure?
Your Answer:
Correct Answer: Abducens (VI)
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 190
Incorrect
-
A child comes to the clinic, they say hello and take a seat. You ask them how their day was to which they answer 'good'. They are then asked to name their favorite animal to which they answer dog. They are then asked what sound a cat makes and they answer woof. They are then asked what color the sky is and they answer green. What sign do they exhibit?
Your Answer:
Correct Answer: Perseveration
Explanation:Perseveration: The Clinical Symptoms in Chronic Schizophrenia and Organic Dementia
Perseveration is a common behavior observed in patients with organic brain involvement. It is characterized by the conscious continuation of an act of an idea. This behavior is frequently seen in patients with delirium, epilepsy, dementia, schizophrenia, and normal individuals under extreme fatigue of drug-induced states.
In chronic schizophrenia and organic dementia, perseveration is a prominent symptom. Patients with these conditions tend to repeat the same words, phrases, of actions over and over again, even when it is no longer appropriate of relevant to the situation. This behavior can be frustrating for caregivers and family members, and it can also interfere with the patient’s ability to communicate effectively.
In schizophrenia, perseveration is often associated with disorganized thinking and speech. Patients may jump from one topic to another without any logical connection, and they may repeat the same words of phrases in an attempt to express their thoughts. In organic dementia, perseveration is a sign of cognitive decline and memory impairment. Patients may repeat the same stories of questions, forgetting that they have already asked of answered them.
Overall, perseveration is a common symptom in patients with organic brain involvement, and it can have a significant impact on their daily functioning and quality of life. Understanding this behavior is essential for effective management and treatment of these conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 191
Incorrect
-
Which of the following diseases is not caused by prions?
Your Answer:
Correct Answer: Progressive supranuclear palsy
Explanation:Prion Diseases
Prion diseases are a group of rare and fatal neurodegenerative disorders that affect humans and animals. These diseases are caused by abnormal proteins called prions, which can cause normal proteins in the brain to fold abnormally and form clumps. This leads to damage and death of brain cells, resulting in a range of symptoms such as dementia, movement disorders, and behavioral changes.
Some of the most well-known prion diseases in humans include Creutzfeldt-Jakob disease, Kuru, Gerstman-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. Creutzfeldt-Jakob disease is the most common prion disease in humans, and it can occur sporadically, genetically, of through exposure to contaminated tissue. Kuru is a rare disease that was once prevalent in Papua New Guinea, and it was transmitted through cannibalism. Gerstman-Straussler-Scheinker syndrome is a rare genetic disorder that affects the nervous system, while Fatal Familial Insomnia is a rare inherited disorder that causes progressive insomnia and other neurological symptoms.
Despite extensive research, there is currently no cure for prion diseases, and treatment is mainly supportive. Prevention measures include avoiding exposure to contaminated tissue and practicing good hygiene.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 192
Incorrect
-
What was the first neurotransmitter to be recognized?
Your Answer:
Correct Answer: Acetylcholine
Explanation:Henry Dale was the first to identify acetylcholine in 1915 through its effects on cardiac tissue, and he was awarded the Nobel Prize in Medicine in 1936 alongside Otto Loewi for their work. Arvid Carlsson discovered dopamine as a neurotransmitter in 1957, while von Euler discovered noradrenaline (also known as norepinephrine) as both a hormone and neurotransmitter in 1946. Oxytocin is typically classified as a hormone, while substance P is a neuropeptide that functions as both a neurotransmitter and neuromodulator and was first discovered in 1931.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 193
Incorrect
-
Which process breaks down dopamine?
Your Answer:
Correct Answer: Monoamine oxidase
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 194
Incorrect
-
In what conditions are Kuru plaques occasionally observed?
Your Answer:
Correct Answer: Creutzfeldt-Jakob disease
Explanation:Pathology Findings in Psychiatry
There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.
Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.
Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.
Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.
Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.
LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.
Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.
Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 195
Incorrect
-
If a patient suspected of having a stroke presents with a deviation of the tongue towards the right, which nerve is likely to be impacted?
Your Answer:
Correct Answer: Right hypoglossal nerve
Explanation:The hypoglossal nerve (nerve XII) is responsible for controlling the motor functions of the tongue and the muscles surrounding the hyoid bone. As a result, when there is a lesion on the right side, the tongue will tend to deviate towards that side. It is important to note that the hypoglossal nerve is purely a motor nerve and does not have any sensory component.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 196
Incorrect
-
What signs of symptoms might indicate the presence of Balint's syndrome?
Your Answer:
Correct Answer: Simultanagnosia
Explanation:Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 197
Incorrect
-
Which of the following is not a characteristic of non-dominant parietal lesions?
Your Answer:
Correct Answer: Agraphia
Explanation:Non-Dominant Parietal Lobe Dysfunction
The non-dominant parietal lobe is typically the right lobe in most individuals. Dysfunction in this area can lead to various symptoms, including the inability to recognize one’s own illness (anosognosia), neglect of half the body (hemiasomatognosia), difficulty dressing (dressing apraxia), trouble with spatial awareness and construction (constructional dyspraxia), difficulty recognizing familiar places (geographical agnosia), and altered perception of sensory stimuli (allesthesia). It’s important to note that agraphia, a symptom seen in Gerstmann’s syndrome, is caused by dysfunction in the dominant parietal lobe, not the non-dominant lobe.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 198
Incorrect
-
A senior citizen with bipolar disorder complains of nausea and vomiting, confusion, and difficulty with coordination. You suspect lithium toxicity despite a normal level of lithium in the blood. What tests can be done to confirm this?
Your Answer:
Correct Answer: EEG
Explanation:Confirmation of lithium toxicity cannot be solely based on a normal serum lithium level. EEG is a more reliable method, as it can detect diffuse slowing and triphasic waves, which are characteristic features of lithium toxicity. CT and MRI brain scans are not helpful in confirming lithium toxicity. While ECG may show changes such as arrhythmias and flattened of inverted T-waves, they are not sufficient to confirm lithium toxicity. A lumbar puncture can rule out an infectious cause for the symptoms but cannot confirm lithium toxicity.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 199
Incorrect
-
Through which opening in the skull does the cranial nerve exit, which is known as the internal auditory canal?
Your Answer:
Correct Answer: Vestibulocochlear (VIII)
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 200
Incorrect
-
What is the neuroanatomical structure that was named after a seahorse due to its alleged resemblance?
Your Answer:
Correct Answer: Hippocampus
Explanation:Brain Structures and Their Etymologies
The hippocampus, with its swirling shape, was named after the seahorse, combining the Greek words ‘hippos’ (horse) and ‘kampos’ (sea-monster). Meanwhile, the cerebellum, which resembles a smaller version of the brain, was named after the Latin word for ‘little brain’. The corpus callosum, a bundle of nerve fibers connecting the two hemispheres of the brain, was named after the Latin for ‘tough body’. The hypothalamus, located below the thalamus, was named after its position. Finally, the putamen, a structure involved in movement control, comes from the Latin word for ‘that which falls off in pruning’. These etymologies provide insight into the history and development of our understanding of the brain’s structures.
-
This question is part of the following fields:
- Neurosciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)