-
Question 1
Correct
-
A 65-year-old man visits the clinic for his regular blood work. The GP requests the medical student to perform venepuncture and obtain blood samples. The student seizes this chance to brush up on their knowledge of vascular anatomy. They plan to draw blood from the median cubital vein located in the antecubital fossa. While aware that the median cubital vein is linked to the cephalic vein, they cannot recall the name of the other vein it connects to. Can you identify the other vein?
Your Answer: Basilic vein
Explanation:The upper limb has both superficial and deep veins. Among the superficial veins are the cephalic, basilic, and median cubital veins. The median cubital vein, which connects the cephalic and basilic veins, is situated in the antecubital fossa and is the preferred site for venepuncture because it is easy to locate and access. However, deep veins like the brachial, ulnar, and radial veins are not suitable for venepuncture as they are located beneath the deep fascia.
The Cephalic Vein: Path and Connections
The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.
After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.
Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 54-year-old male presents to the hospital with a chief complaint of central chest pain, accompanied by nausea and sweating that has been ongoing for two hours. After eight hours of the onset of the pain, the following result is obtained:
Troponin T 30.8 ug/L (<10)
What is the probable diagnosis?Your Answer: Myocardial infarction
Explanation:Elevated Troponin T as a Marker of Cardiac Injury
This patient’s troponin T concentration is significantly elevated, indicating cardiac injury. Troponin T is a component of the cardiac myocyte and is normally undetectable. Elevated levels of troponin T are highly specific to cardiac injury and are more reliable than creatinine kinase, which is less specific. Troponin T levels increase in acute coronary syndromes, myocarditis, and myocardial infarction.
In this patient’s case, the elevated troponin T suggests a myocardial infarction (MI) due to the symptoms presented. Troponin T can be detected within a few hours of an MI and peaks at 14 hours after the onset of pain. It may peak again several days later and remain elevated for up to 10 days. Therefore, it is a good test for acute MI but not as reliable for recurrent MI in the first week. CK-MB may be useful in this case as it starts to rise 10-24 hours after an MI and disappears after three to four days.
Other conditions that may present with similar symptoms include aortic dissection, which causes tearing chest pain that often radiates to the back with hypotension. ECG changes are not always present. Myocarditis causes chest pain that improves with steroids or NSAIDs and a rise in troponin levels, with similar ECG changes to a STEMI. There may also be reciprocal lead ST depression and PR depression. Pulmonary embolism presents with shortness of breath, pleuritic chest pain, hypoxia, and hemoptysis. Pericardial effusion presents with similar symptoms to pericarditis, with Kussmaul’s sign typically present.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 65-year-old man arrives at the emergency department via ambulance complaining of chest pain. He reports that the pain started suddenly a few minutes ago and describes it as a sharp sensation that extends to his back.
The patient has a history of uncontrolled hypertension.
A CT scan reveals an enlarged mediastinum.
What is the most likely cause of the diagnosis?Your Answer: Tear in the tunica externa of the aorta
Correct Answer: Tear in the tunica intima of the aorta
Explanation:An aortic dissection is characterized by a tear in the tunica intima of the aortic wall, which is a medical emergency. Patients typically experience sudden-onset, central chest pain that radiates to the back. This condition is more common in patients with hypertension and is associated with a widened mediastinum on a CT scan.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 67-year-old male arrives at the emergency department with an abrupt onset of intense chest pain that he describes as tearing through his body. He is promptly diagnosed with a Stanford Type A aortic dissection and immediately undergoes surgical repair. What embryonic structure is responsible for the region where the dissection occurred?
Your Answer: Ligamentum arteriosum
Correct Answer: Truncus arteriosus
Explanation:The truncus arteriosus is responsible for giving rise to both the ascending aorta and the pulmonary trunk during embryonic development.
When a Stanford Type A aortic dissection occurs, it typically affects the ascending aorta, which originates from the truncus arteriosus.
During fetal development, the ductus arteriosus allows blood to bypass the pulmonary circuit by shunting it from the pulmonary arteries back into the aortic arch. In adults, the remnant of this structure is known as the ligamentum arteriosum, which serves as an anchor for the aortic arch.
The bulbus cordis plays a role in the formation of the ventricles, while the common cardinal vein ultimately becomes the superior vena cava.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 50-year-old male is brought to the trauma unit following a car accident, with an estimated blood loss of 1200ml. His vital signs are as follows: heart rate of 125 beats per minute, blood pressure of 125/100 mmHg, and he feels cold to the touch.
Which component of his cardiovascular system has played the biggest role in maintaining his blood pressure stability?Your Answer: Arteries
Correct Answer: Arterioles
Explanation:The highest resistance in the cardiovascular system is found in the arterioles, which means they contribute the most to the total peripheral resistance. In cases of compensated hypovolaemic shock, such as in this relatively young patient, the body compensates by increasing heart rate and causing peripheral vasoconstriction to maintain blood pressure.
Arteriole vasoconstriction in hypovolaemic shock patients leads to an increase in total peripheral resistance, which in turn increases mean arterial blood pressure. This has a greater effect on diastolic blood pressure, resulting in a narrowing of pulse pressure and clinical symptoms such as cold peripheries and delayed capillary refill time.
Capillaries are microscopic channels that provide blood supply to the tissues and are the primary site for gas and nutrient exchange. Venules, on the other hand, are small veins with diameters ranging from 8-100 micrometers and join multiple capillaries exiting from a capillary bed.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
As the physician in charge of the health of a 70-year-old man who came in for his yearly check-up, you discover that he smokes 15 cigarettes daily and has a medical history of hypertension and hypercholesterolemia. During the examination, you hear a left-sided carotid bruit while auscultating. A recent duplex ultrasound showed that the left internal carotid artery has a 50% stenosis. What is the final step in the pathogenesis of this man's condition?
Your Answer: Endothelial dysfunction allowing deposition into the tunica intima
Correct Answer: Smooth muscle proliferation and migration into the tunica intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 57-year-old man needs long term parenteral nutrition and a PICC line is chosen for long term venous access. The insertion site is the elbow region of the basilic vein. During catheter advancement, which venous structure is the catheter tip most likely to pass into from the basilic vein?
Your Answer: Cephalic vein
Correct Answer: Axillary vein
Explanation:The most common site for a PICC line to end up in is the axillary vein, which is where the basilic vein drains into. While PICC lines can be placed in various locations, the posterior circumflex humeral vein is typically encountered before the axillary vein. However, due to its angle of entry into the basilic vein, it is unlikely for a PICC line to enter this structure.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
Sarah is a 52-year-old patient with hypertension. Her blood pressure remains high despite taking ramipril therefore add-on therapy with a thiazide-like diuretic is being considered.
What is a contraindication to starting this therapy?Your Answer: Afro-Caribbean family origin
Correct Answer: Gout
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at the scene. A post-mortem examination is carried out to determine the cause of death, which demonstrates 90% stenosis of the left anterior descending artery.
What is the ultimate stage in the development of this stenosis?Your Answer: Smooth muscle proliferation and migration from the tunica media into the intima
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Correct
-
A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?
Your Answer: Uraemia
Explanation:There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.
ECG results do not indicate a recent heart attack.
The patient’s age decreases the likelihood of malignancy.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 68-year-old man presents to the emergency department after experiencing a syncopal episode. His ECG reveals a prolonged PR interval, with every other QRS complex being dropped. The QRS complex width is within normal limits.
From which area of the heart is the conduction delay most likely originating?Your Answer:
Correct Answer: Atrio-Ventricular node
Explanation:The PR interval is the duration between the depolarization of the atria and the depolarization of the ventricles. In this case, the man is experiencing a 2:1 block, which is a type of second-degree heart block. Since his PR interval is prolonged, the issue must be occurring in the pathway between the atria and ventricles. However, since his QRS complex is normal, it is likely that the problem is in the AV node rather than the bundles of His. If the issue were in the sino-atrial node, it would not cause a prolonged PR interval with dropped QRS complexes. Similarly, if there were a slowing of conduction in the ventricles, it would cause a wide QRS complex but not a prolonged PR interval.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 52-year-old woman has come to you with her ambulatory blood pressure monitor readings, which are consistently high. You suggest starting her on ramipril and advise her to avoid certain things that could impact the absorption of the medication.
What should she avoid?Your Answer:
Correct Answer: Antacids
Explanation:ACE-inhibitors’ therapeutic effect is reduced by antacids as they interfere with their absorption. However, low dose aspirin is safe to use alongside ACE-inhibitors. Coffee and tea do not affect the absorption of ACE-inhibitors. Patients taking ACE-inhibitors need not avoid high-intensity exercise, unlike those on statins who have an increased risk of muscle breakdown due to rhabdomyolysis.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
You are a doctor working in the intensive care unit. A 35-year-old man has been admitted to the ward due to suddenly vomiting large volumes of fresh blood. His blood pressure is 90/60 mmHg and his heart rate is 150bpm. He needs urgent intravenous fluids. Several attempts at intravenous cannulation have been made but to no avail. The on-call anaesthetist suggests performing a great saphenous vein cutdown.
Where should the anaesthetist make the incision?Your Answer:
Correct Answer: Anterior to the medial malleolus
Explanation:The long saphenous vein is often used for venous cutdown and passes in front of the medial malleolus. Venous cutdown involves surgically exposing a vein for cannulation.
On the other hand, the short saphenous vein is situated in front of the lateral malleolus and runs up the back of the thigh to drain into the popliteal vein at the popliteal fossa.
The long saphenous vein originates from the point where the first dorsal digital vein, which drains the big toe, joins the dorsal venous arch of the foot. It then passes in front of the medial malleolus, ascends the medial aspect of the thigh, and drains into the femoral vein by passing through the saphenous opening.
The femoral vein becomes the external iliac vein at the inferior margin of the inguinal ligament. It receives blood from the great saphenous and popliteal veins, and a deep vein thrombosis that blocks this vein can be life-threatening.
During a vascular examination of the lower limb, the dorsalis pedis artery is often palpated. It runs alongside the extensor digitorum longus.
Lastly, the posterior tibial vein is located at the back of the medial malleolus, together with other structures, within the tarsal tunnel.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been discharged from the hospital after experiencing a non-ST-elevation myocardial infarction (NSTEMI). He was already taking aspirin, atorvastatin, bisoprolol, and ramipril before his NSTEMI. As part of his post-discharge instructions, he has been advised to take ticagrelor for the next 12 months. What is the mechanism of action of this newly prescribed medication?
Your Answer:
Correct Answer: P2Y12 receptor antagonist
Explanation:Ticagrelor functions similarly to clopidogrel by hindering the binding of ADP to platelet receptors. It is prescribed to prevent atherothrombotic events in individuals with acute coronary syndrome (ACS) and is typically administered in conjunction with aspirin. Additionally, it is a specific and reversible inhibitor.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?
Your Answer:
Correct Answer: L1
Explanation:The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.
The Superior Mesenteric Artery and its Branches
The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.
The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.
The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 50-year-old patient is admitted to the cardiology department with infective endocarditis. While examining the patient's hands, the physician observes a collapsing pulse. What other findings can be expected during the examination?
Your Answer:
Correct Answer: Diastolic murmur in the aortic area
Explanation:Aortic regurgitation is often associated with a collapsing pulse, which is a clinical sign. This condition occurs when the aortic valve allows blood to flow back into the left ventricle during diastole. As a result, a diastolic murmur can be heard in the aortic area. While infective endocarditis can cause aortic regurgitation, it can also affect other valves in the heart, leading to a diastolic murmur in the pulmonary area. However, this would not cause a collapsing pulse. A diastolic murmur in the mitral area is indicative of mitral stenosis, which is not associated with a collapsing pulse. Aortic stenosis, which is characterized by restricted blood flow between the left ventricle and aorta, is associated with an ejection systolic murmur in the aortic area, but not a collapsing pulse. Finally, mitral valve regurgitation, which affects blood flow between the left atrium and ventricle, is associated with a pansystolic murmur in the mitral area, but not a collapsing pulse.
Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan’s and Ehler-Danlos syndrome.
The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.
Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
An 80-year-old patient who recently had a TIA is admitted to the vascular ward in preparation for a carotid endarterectomy tomorrow. During her pre-operative consultation, the surgeon explained that the artery will be tied during the procedure. The patient asks about the different arteries and their functions. You inform her that the internal carotid artery supplies the brain, while the external carotid artery divides into two arteries after ascending the neck. One of these arteries is the superficial temporal artery, but what is the other?
Your Answer:
Correct Answer: Maxillary artery
Explanation:The correct answer is the maxillary artery, which is one of the two terminal branches of the external carotid artery. It supplies deep structures of the face and usually bifurcates within the parotid gland to form the superficial temporal artery and maxillary artery. The facial artery supplies superficial structures in the face, while the lingual artery supplies the tongue. The middle meningeal artery is a branch of the maxillary artery and supplies the dura mater and calvaria. There are also two deep temporal arteries that arise from the maxillary artery and supply the temporalis muscle. The patient is scheduled to undergo carotid endarterectomy, a surgical procedure that involves removing atherosclerotic plaque from the common carotid artery to reduce the risk of subsequent ischaemic strokes or transient ischaemic attacks.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 15-year-old boy is brought to the emergency department by air ambulance following a fight. He presents with peripheral shutdown and an unrecordable blood pressure. The chest X-ray reveals a stab wound that has penetrated the left atrium and the artery that supplies it. Which artery is the most likely to have been affected?
Your Answer:
Correct Answer: Left coronary artery
Explanation:The left coronary artery and its major branch, the left circumflex, supply the left atrium. However, the other arteries do not provide blood supply to the left atrium. The right coronary artery supplies the right ventricle and the atrioventricular node + sino atrial node in most patients. The left marginal artery supplies the left ventricle, while the posterior descending artery supplies the posterior third of the interventricular septum. Lastly, the left anterior descending artery supplies the left ventricle.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
Which segment of the ECG waveform corresponds to the shutting of the mitral valve?
Your Answer:
Correct Answer: QRS complex
Explanation:A diagram depicting the various stages of the cardiac cycle can be accessed through the external link provided.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 45-year-old male with no past medical history is recently diagnosed with hypertension. His GP prescribes him lisinopril and orders a baseline renal function blood test, which comes back normal. The GP schedules a follow-up appointment for two weeks later to check his renal function. At the follow-up appointment, the patient's blood test results show:
Na 137 mmol/l
K 4.7 mmol/l
Cl 98 mmol/l
Urea 12.2 mmol/l
Creatinine 250 mg/l
What is the most likely cause for the abnormal blood test results?Your Answer:
Correct Answer: Bilateral stenosis of renal arteries
Explanation:Patients with renovascular disease should not be prescribed ACE inhibitors as their first line antihypertensive medication. This is because bilateral renal artery stenosis, a common cause of hypertension, can go undetected and lead to acute renal impairment when treated with ACE inhibitors. This occurs because the medication prevents the constriction of efferent arterioles, which is necessary to maintain glomerular pressure in patients with reduced blood flow to the kidneys. Therefore, further investigations such as a renal artery ultrasound scan should be conducted before prescribing ACE inhibitors to patients with hypertension.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
The venous drainage of the heart is aided by the Thebesian veins. To which primary structure do they drain?
Your Answer:
Correct Answer: Atrium
Explanation:The surface of the heart is covered by numerous small veins known as thebesian veins, which drain directly into the heart, typically into the atrium.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A young woman presents with sudden palpitations and difficulty breathing, and her ECG reveals tachycardia. Which cardiac component typically experiences the most rapid depolarization?
Your Answer:
Correct Answer: Sino-atrial node
Explanation:The heart’s conducting system is made up of specialized cardiac muscle cells and fibers that generate and rapidly transmit action potentials. This system is crucial for coordinating the contractions of the heart’s chambers during the cardiac cycle. When this system malfunctions due to conduction blockages or abnormal action potential sources, it can lead to arrhythmias.
The conducting system has five main components:
1. The sino-atrial (SAN) node, located in the right atrium, generates electrical signals.
2. These signals stimulate the atria to contract and travel to the atrio-ventricular (AVN) node in the interatrial septum.
3. After a delay, the stimulus diverges and is conducted through the left and right bundle of His.
4. The conduction then passes to the respective Purkinje fibers for each side of the heart.
5. Finally, the electrical signals reach the endocardium at the apex of the heart and the ventricular epicardium.Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 67-year-old man with heart failure visits his physician and inquires about the factors that influence stroke volume. What interventions can enhance stroke volume in a healthy person?
Your Answer:
Correct Answer: Increased central venous pressure
Explanation:There are four factors that impact stroke volume: cardiac size, contractility, preload, and afterload. When someone has heart failure, their stroke volume decreases. If there is an increase in parasympathetic activation, it would lead to a reduction in contractility. Hypertension would increase afterload, which means the ventricle would have to work harder to pump blood into the aorta. If there is an increase in central venous pressure, it would lead to an increase in preload due to an increase in venous return.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 72-year-old male with urinary incontinence visits the urogynaecology clinic and is diagnosed with overactive bladder incontinence. He is prescribed a medication that works by blocking the parasympathetic pathway. What other drugs have a similar mechanism of action to the one he was prescribed?
Your Answer:
Correct Answer: Atropine
Explanation:Atropine is classified as an antimuscarinic drug that works by inhibiting the M1 to M5 muscarinic receptors. While oxybutynin is commonly prescribed for urinary incontinence due to its ability to block the M3 muscarinic receptors, atropine is more frequently used in anesthesia to reduce salivation before intubation.
Alfuzosin, on the other hand, is an alpha blocker that is primarily used to treat benign prostate hyperplasia.
Meropenem is an antibiotic that is reserved for infections caused by bacteria that are resistant to most beta-lactams. However, it is typically used as a last resort due to its potential adverse effects.
Mirabegron is another medication used to treat urinary incontinence, but it works by activating the β3 adrenergic receptors.
Understanding Atropine and Its Uses
Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.
Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
You are requested to assess a patient in the emergency department who has experienced abrupt onset chest pain, dyspnoea and diaphoresis. After reviewing the patient's ECG, you identify changes within a specific section and promptly arrange for transfer to the catheterisation laboratory.
What is the underlying process indicated by the affected section of the ECG?Your Answer:
Correct Answer: Period between ventricular depolarisation and repolarisation
Explanation:The ST segment on an ECG indicates the period when the entire ventricle is depolarized. In the case of a suspected myocardial infarction, it is crucial to examine the ST segment for any elevation or depression, which can indicate a STEMI or NSTEMI, respectively.
The ECG does not have a specific section that corresponds to the firing of the sino-atrial node, which triggers atrial depolarization (represented by the p wave). The T wave represents ventricular repolarization.
In atrial fibrillation, the p wave is absent or abnormal due to the irregular firing of the atria.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
Samantha is a 63-year-old female who has just been diagnosed with hypertension. Her physician informs her that her average blood pressure is influenced by various bodily processes, such as heart function, nervous system activity, and blood vessel diameter. Assuming an average cardiac output (CO) of 4L/min, Samantha's mean arterial pressure (MAP) is recorded at 140mmHg during her examination.
What is Samantha's systemic vascular resistance (SVR) based on these measurements?Your Answer:
Correct Answer: 35 mmhg⋅min⋅mL-1
Explanation:The equation used to calculate systemic vascular resistance is SVR = MAP / CO. For example, if the mean arterial pressure (MAP) is 140 mmHg and the cardiac output (CO) is 4 mL/min, then the SVR would be 35 mmHg⋅min⋅mL-1. Although the theoretical equation for SVR is more complex, it is often simplified by assuming that central venous pressure (CVP) is negligible. However, in reality, MAP is typically measured directly or indirectly using arterial pressure measurements. The equation for calculating MAP at rest is MAP = diastolic pressure + 1/3(pulse pressure), where pulse pressure is calculated as systolic pressure minus diastolic pressure.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
An occlusion of the anterior cerebral artery may affect the blood supply to which of the following structures, except for:
Your Answer:
Correct Answer: Brocas area
Explanation:The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary bypass. Which of the following structures is not located within the right atrium?
Your Answer:
Correct Answer: Trabeculae carnae
Explanation:The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 63-year-old male on the wards has come to you with recent onset indigestion. He denies any red flag symptoms and has a medical history of hypertension, congestive heart failure, depression, and gout. Later in the day, while reviewing his routine blood results, you notice an abnormality.
Here are his blood results from two days ago and today:
Parameter 2 days ago Today
Hb 135 g/l 134 g/l
Platelets 310 * 109/l 312 * 109/l
WBC 6.5 * 109/l 6.4 * 109/l
Na+ 142 mmol/l 128 mmol/l
K+ 4.2 mmol/l 3.8 mmol/l
Urea 4.8 mmol/l 4.8 mmol/l
Creatinine 60 µmol/l 61 µmol/l
What could be the reason for the discrepancy in his blood results?Your Answer:
Correct Answer: Combined use of indapamide and omeprazole
Explanation:Severe hyponatraemia can occur when PPIs and thiazide diuretics are used together. The patient in question has recently experienced hyponatraemia, which is most likely caused by the combination of indapamide and omeprazole. It is probable that omeprazole was prescribed for his indigestion, while he is likely taking indapamide due to his history of congestive heart failure. It is important to note that the other options listed can cause hypernatraemia, not hyponatraemia.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a consultant and a medical student. He has a medical history of hypertension, heart failure, depression, and gout, and is currently taking ramipril, atenolol, furosemide, sertraline, allopurinol, and ibuprofen. The consultant suspects that his slightly low blood pressure may be due to his medications. The patient's urea and electrolyte levels are provided below. Can you identify the role of atenolol in reducing blood pressure?
Na+ 142 mmol/l
K+ 4.2 mmol/l
Urea 6 mmol/l
Creatinine 68 µmol/lYour Answer:
Correct Answer: Inhibits the release of renin from the kidneys
Explanation:Beta-blockers have an added advantage in treating hypertension as they can suppress the release of renin from the kidneys. This is because the release of renin is partly regulated by β1-adrenoceptors in the kidney, which are inhibited by beta-blockers. By reducing the amount of circulating plasma renin, the levels of angiotensin II and aldosterone decrease, leading to increased renal loss of sodium and water, ultimately lowering arterial pressure.
It is important to note that atenolol does not compete with aldosterone, unlike spironolactone, a potassium-sparing diuretic that does compete with aldosterone for its receptor. Additionally, atenolol does not inhibit the conversion of ATI to ATII, which is achieved by ACE-inhibitors like ramipril.
While both beta-1 and beta-2 receptors are present in the heart, atenolol primarily acts on beta-1 receptors, resulting in negative inotropic, negative chronotropic, and positive lusitropic effects. Lusitropy refers to the relaxation of the heart.
Therefore, the statement that atenolol inhibits the release of renin is correct, and the fifth option is incorrect.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)