-
Question 1
Correct
-
Which one of the following is true regarding the phrenic nerves?
Your Answer: They both lie anterior to the hilum of the lungs
Explanation:The phrenic nerves, located in the anterior region of the lung’s hilum, play a crucial role in keeping the diaphragm functioning properly. These nerves have both sensory and motor functions, and any issues in the sub diaphragmatic area may result in referred pain in the shoulder.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
An 87-year-old man with a history of interstitial lung disease is admitted with fever, productive cough, and difficulty breathing. His inflammatory markers are elevated, and a chest x-ray reveals focal patchy consolidation in the right lung. He requires oxygen supplementation as his oxygen saturation level is 87% on room air. What factor causes a decrease in haemoglobin's affinity for oxygen?
Your Answer: Decrease in 2,3-bisphosphoglycerate
Correct Answer: Increase in temperature
Explanation:What effect does pyrexia have on the oxygen dissociation curve?
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Correct
-
A 63-year-old man arrives at the ER with a recent onset of left-sided facial paralysis. He reports experiencing a painful rash around his ear on the affected side for the past five days. Your suspicion is Ramsay Hunt syndrome. What virus is responsible for this condition?
Your Answer: Varicella zoster virus
Explanation:The geniculate ganglion of the facial nerve (CN VII) reactivates the varicella-zoster virus, causing Ramsay Hunt syndrome.
Infectious mononucleosis (glandular fever) is primarily linked to the Epstein-Barr virus.
Viral warts are commonly caused by human papillomavirus (HPV), with certain types being associated with gynaecological malignancy. Vaccines are now available to protect against the carcinogenic strains of HPV.
Oral or genital herpes infections are caused by the herpes simplex virus.
Understanding Ramsay Hunt Syndrome
Ramsay Hunt syndrome, also known as herpes zoster oticus, is a condition that occurs when the varicella zoster virus reactivates in the geniculate ganglion of the seventh cranial nerve. The first symptom of this syndrome is often auricular pain, followed by facial nerve palsy and a vesicular rash around the ear. Other symptoms may include vertigo and tinnitus.
To manage Ramsay Hunt syndrome, doctors typically prescribe oral acyclovir and corticosteroids. These medications can help reduce the severity of symptoms and prevent complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 70-year-old man presents with haemoptysis and undergoes a bronchoscopy. The carina is noted to be widened. Where does the trachea bifurcate?
Your Answer: T3
Correct Answer: T5
Explanation:The trachea divides into two branches at the fifth thoracic vertebrae, or sometimes the sixth in individuals who are tall.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 40-year-old woman visits her GP after being treated at the Emergency Department for a foreign body lodged in her throat for 2 days. Although the object has been removed, she is experiencing difficulty swallowing. Upon further questioning, she mentions altered sensation while swallowing, describing it as a sensation of 'not feeling like food is being swallowed' during meals.
Which nerve or nerves are likely to have been affected?Your Answer: External laryngeal nerve
Correct Answer: Internal laryngeal nerve
Explanation:The internal laryngeal nerve is responsible for providing sensory information to the supraglottis and branches off from the superior laryngeal nerve. It is important to note that the cervical plexus, external laryngeal nerve, recurrent laryngeal nerve, and superior laryngeal nerve do not perform the same function as the internal laryngeal nerve.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 72-year-old man is admitted to the hospital with symptoms of the flu, confusion, and vomiting. His finger prick glucose levels are within normal range. The physician suspects that the patient's living conditions, which include poor housing and lack of support at home, may have contributed to his symptoms.
What physiological response is expected in this patient?Your Answer: A rightward shift of the oxygen dissociation curve
Correct Answer: An increased affinity of haemoglobin for oxygen
Explanation:Methaemoglobin causes a leftward shift of the oxygen dissociation curve, indicating an increased affinity of haemoglobin for oxygen. This results in reduced offloading of oxygen into the tissues, leading to decreased oxygen delivery. It is important to understand the oxygen-dissociation curve and the effects of carbon monoxide poisoning, which causes increased oxygen binding to methaemoglobin. A rightward shift of the curve indicates increased oxygen delivery to the tissues, which is not the case in methaemoglobinemia.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
As the pregnancy progresses, at what stage does the foetus typically begin producing surfactant?
A mother has been informed that she will have to deliver her baby prematurely due to complications in the pregnancy. To decrease the chances of neonatal distress syndrome, doctors have administered steroids to stimulate surfactant production in the foetus. They clarify that the foetus is already generating its own surfactant, and these steroids will enhance the process.Your Answer: Week 4
Correct Answer: Week 22
Explanation:Lung development in humans begins at week 4 with the formation of the respiratory diverticulum. By week 10, the lungs start to grow as tertiary bronchial buds form. Terminal bronchioles begin to form around week 18. The saccular stage of lung development, which marks the earliest viability for a human fetus, occurs at around 22-24 weeks when type 2 alveolar cells start producing surfactant. By week 30, the primary alveoli form as the mesenchyme surrounding the lungs becomes highly vascular.
The Importance of Pulmonary Surfactant in Breathing
Pulmonary surfactant is a substance composed of phospholipids, carbohydrates, and proteins that is released by type 2 pneumocytes. Its main component, dipalmitoyl phosphatidylcholine (DPPC), plays a crucial role in reducing alveolar surface tension. This substance is first detectable around 28 weeks and increases in concentration as the alveoli decrease in size. This helps prevent the alveoli from collapsing and reduces the muscular force needed to expand the lungs, ultimately decreasing the work of breathing. Additionally, pulmonary surfactant lowers the elastic recoil at low lung volumes, preventing the alveoli from collapsing at the end of each expiration. Overall, pulmonary surfactant is essential in maintaining proper lung function and preventing respiratory distress.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Correct
-
A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?
Your Answer: Silent chest
Explanation:Identify the life-threatening features of an asthma attack.
Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.
A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.
It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Incorrect
-
A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of increased difficulty breathing and cachexia. Upon examination, a chest X-ray reveals an elevated left hemidiaphragm, enlarged hilar lymph nodes, and a significant opacification. Which structure is most likely to have been affected?
Your Answer: Sympathetic chain
Correct Answer: Left phrenic nerve
Explanation:It is unlikely that direct injury would result in the elevation of the left hemidiaphragm, especially since there is no history of trauma or surgery. However, damage to the long thoracic nerve could cause winging of the scapula due to weakened serratus anterior muscle. On the other hand, injury to the thoracodorsal nerve, which innervates the latissimus dorsi muscle, can lead to weakened shoulder adduction and is a common complication of axillary surgery.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Correct
-
A 25-year-old man is receiving an endotracheal intubation. At which vertebral level does the trachea originate?
Your Answer: C6
Explanation:The trachea starts at the sixth cervical vertebrae and ends at the fifth thoracic vertebrae (or sixth in individuals with a tall stature during deep inhalation).
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)