-
Question 1
Correct
-
A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain, chronic sinusitis, and haemoptysis for the past 3 days. During the examination, the doctor observes a saddle-shaped nose and a necrotic, purpuric, and blistering plaque on his wrist. The patient reports that he had a small blister a few weeks ago, which has now progressed to this. The blood test results suggest a possible diagnosis of granulomatosis with polyangiitis, and the patient is referred for a renal biopsy. What biopsy findings would confirm the suspected diagnosis?
Your Answer: Epithelial crescents in Bowman's capsule
Explanation:Glomerulonephritis is a condition that affects the kidneys and can present with various pathological changes. In rapidly progressive glomerulonephritis, patients may present with respiratory tract symptoms and cutaneous manifestations of vasculitis. Renal biopsy will show epithelial crescents in Bowman’s capsule, indicating severe glomerular injury. Mesangioproliferative glomerulonephritis is characterized by a diffuse increase in mesangial cells and is not associated with respiratory tract symptoms or cutaneous manifestations of vasculitis. Membranoproliferative glomerulonephritis involves deposits in the intraglomerular mesangium and is associated with activation of the complement pathway and glomerular damage. It is unlikely to be the diagnosis in the scenario as it is not associated with vasculitis symptoms. A normal nephron architecture would not explain the patient’s symptoms and is an incorrect answer.
Granulomatosis with Polyangiitis: An Autoimmune Condition
Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.
To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.
The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Correct
-
A 44-year-old heavy smoker presents with a productive cough and progressively worsening shortness of breath on exertion. The patient's spirometry results are forwarded to you in clinic for review.
Tidal volume (TV) = 400 mL.
Vital capacity (VC) = 3,300 mL.
Inspiratory capacity (IC) = 2,600 mL.
FEV1/FVC = 60%
Body plethysmography is undertaken, demonstrating a residual volume (RV) of 1,200 mL.
What is this patient's total lung capacity (TLC)?Your Answer: 4,500 mL
Explanation:To calculate the total lung capacity, one can add the vital capacity and residual volume. For example, if the vital capacity is 3300 mL and the residual volume is 1200 mL, the total lung capacity would be 4500 mL. It is important to note that tidal volume, inspiratory capacity, and the FEV1/FVC ratio are other measurements related to lung function. Residual volume refers to the amount of air left in the lungs after a maximal exhalation, while total lung capacity refers to the volume of air in the lungs after a maximal inhalation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Correct
-
A 55-year-old man presents to his GP complaining of vertigo, describing a sensation of the room spinning around him. He reports that the symptoms are exacerbated when he rolls over in bed. The GP suspects that otoliths in the semicircular canals of the inner ear may be the cause. What diagnostic test could the GP perform to confirm this suspicion?
Your Answer: Dix-Hallpike manoeuvre
Explanation:Benign paroxysmal positional vertigo (BPPV) is suspected based on the patient’s history. To confirm the diagnosis, the Dix-Hallpike manoeuvre can be performed, which involves quickly moving the patient from a sitting to supine position and observing for nystagmus.
If BPPV is confirmed, the Epley manoeuvre can be used for treatment. This manoeuvre aims to dislodge otoliths by promoting fluid movement in the inner ear’s semicircular canals.
Carpal tunnel syndrome can be diagnosed by a positive Tinel’s sign. This involves tapping the median nerve over the flexor retinaculum, causing paraesthesia in the median nerve’s distribution.
The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.
Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.
Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Correct
-
A 20-year-old female presented to the hospital with a complaint of a sore throat. She reported having a high-grade fever and severe pain on the right side of her throat for the past four days. The patient also experienced difficulty in swallowing and had restricted mouth opening. Additionally, she complained of bilateral ear pain and headache. Despite receiving oral antibiotics, her symptoms had worsened.
Upon examination, the patient had a fever of 38.5ºC and prominent cervical lymphadenopathy. Swelling of the right soft palate was observed, and the uvula was deviated to the left.
What is the most probable diagnosis?Your Answer: Peritonsillar abscess (quinsy)
Explanation:Trismus, which is difficulty in opening the mouth, is a common symptom of peritonsillar abscess (also known as quinsy). It is important to note that quinsy is a complication of tonsillitis, not acute tonsillitis itself. Epiglottitis may present with muffled voice, drooling, and difficulty in breathing, while infectious mononucleosis is associated with other symptoms such as weight loss, fatigue, and enlarged lymph nodes and organs.
Peritonsillar Abscess: Symptoms and Treatment
A peritonsillar abscess, also known as quinsy, is a complication that can arise from bacterial tonsillitis. This condition is characterized by severe throat pain that is localized to one side, along with difficulty opening the mouth and reduced neck mobility. Additionally, the uvula may be deviated to the unaffected side. It is important to seek urgent medical attention from an ENT specialist if these symptoms are present.
The treatment for a peritonsillar abscess typically involves needle aspiration or incision and drainage, along with intravenous antibiotics. In some cases, a tonsillectomy may be recommended to prevent recurrence of the abscess. It is important to follow the recommended treatment plan and attend all follow-up appointments to ensure proper healing and prevent complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Correct
-
A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.
The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.
What is the most likely condition based on this patient's clinical presentation?Your Answer: Cholesteatoma
Explanation:Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.
Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.
Understanding Cholesteatoma
Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.
The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.
During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.
Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.
In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Correct
-
A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?
Your Answer: Clubbing
Explanation:Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
A 72-year-old man is admitted to the hospital with symptoms of the flu, confusion, and vomiting. His finger prick glucose levels are within normal range. The physician suspects that the patient's living conditions, which include poor housing and lack of support at home, may have contributed to his symptoms.
What physiological response is expected in this patient?Your Answer: A decreased affinity of haemoglobin for oxygen
Correct Answer: An increased affinity of haemoglobin for oxygen
Explanation:Methaemoglobin causes a leftward shift of the oxygen dissociation curve, indicating an increased affinity of haemoglobin for oxygen. This results in reduced offloading of oxygen into the tissues, leading to decreased oxygen delivery. It is important to understand the oxygen-dissociation curve and the effects of carbon monoxide poisoning, which causes increased oxygen binding to methaemoglobin. A rightward shift of the curve indicates increased oxygen delivery to the tissues, which is not the case in methaemoglobinemia.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 70-year-old man with lung cancer is having a left pneumonectomy. The left main bronchus is being divided. Which thoracic vertebrae is located behind this structure?
Your Answer: T7
Correct Answer: T6
Explanation:Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A 19-year-old male presents to the emergency department with complaints of breathing difficulty. Upon examination, his chest appears normal, but his respiratory rate is 32 breaths per minute. The medical team suspects he may be experiencing a panic attack and subsequent hyperventilation. What impact will this have on his blood gas levels?
Your Answer: Respiratory alkalosis
Explanation:The patient is experiencing a respiratory alkalosis due to their hyperventilation, which is causing a decrease in carbon dioxide levels and resulting in an alkaline state.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Correct
-
An 80-year-old woman visits her doctor complaining of a persistent cough. She has been smoking 20 cigarettes a day for the past 30 years and is worried that this might be the reason for her symptom. The doctor diagnoses her with chronic obstructive pulmonary disease (COPD) which is likely caused by chronic bronchitis. Can you provide the definition of chronic bronchitis?
Your Answer: Chronic productive cough for at least 3 months in at least 2 years
Explanation:Chronic bronchitis is characterized by a persistent cough with sputum production for a minimum of 3 months in two consecutive years, after excluding other causes of chronic cough. Emphysema, on the other hand, is defined by the enlargement of air spaces beyond the terminal bronchioles. None of the remaining options are considered as definitions of COPD.
COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
Which one of the following is not a cause of increased anion gap acidosis?
Your Answer: Paraldehyde
Correct Answer: Acetazolamide
Explanation:Causes of anion gap acidosis can be remembered using the acronym MUDPILES, which stands for Methanol, Uraemia, DKA/AKA, Paraldehyde/phenformin, Iron/INH, Lactic acidosis, Ethylene glycol, and Salicylates.
Disorders of Acid-Base Balance
The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 65-year-old man is having a coronary artery bypass surgery. Which structure would typically need to be divided during the median sternotomy procedure?
Your Answer: Brachiocephalic vein
Correct Answer: Interclavicular ligament
Explanation:During a median sternotomy, the interclavicular ligament is typically cut to allow access. However, it is important to avoid intentionally cutting the pleural reflections, as this can lead to the accumulation of fluid in the pleural cavity and require the insertion of a chest drain. The pectoralis major muscles may also be encountered, but if the incision is made in the midline, they should not need to be formally divided. It is crucial to be mindful of the proximity of the brachiocephalic vein and avoid injuring it, as this can result in significant bleeding.
Sternotomy Procedure
A sternotomy is a surgical procedure that involves making an incision in the sternum to access the heart and great vessels. The most common type of sternotomy is a median sternotomy, which involves making a midline incision from the interclavicular fossa to the xiphoid process. The fat and subcutaneous tissues are then divided to the level of the sternum, and the periosteum may be gently mobilized off the midline. However, it is important to avoid vigorous periosteal stripping. A bone saw is used to divide the bone itself, and bleeding from the bony edges of the cut sternum is stopped using roller ball diathermy or bone wax.
Posteriorly, the reflections of the parietal pleura should be identified and avoided, unless surgery to the lung is planned. The fibrous pericardium is then incised, and the heart is brought into view. It is important to avoid the left brachiocephalic vein, which is an important posterior relation at the superior aspect of the sternotomy incision. More inferiorly, the thymic remnants may be identified. At the inferior aspect of the incision, the abdominal cavity may be entered, although this is seldom troublesome.
Overall, a sternotomy is a complex surgical procedure that requires careful attention to detail and a thorough understanding of the anatomy of the chest and heart. By following the proper techniques and precautions, surgeons can safely access the heart and great vessels to perform a variety of life-saving procedures.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Correct
-
A 15-year-old boy presents to his GP with a painless swelling in his neck. The mass is located centrally just below the hyoid bone and does not cause any difficulty in swallowing or breathing. Upon examination, the GP notes that the mass moves with protrusion of the tongue and with swallowing. The GP diagnoses the boy with a benign thyroglossal cyst, which is caused by a persistent thyroglossal duct, and advises surgical removal. Where is the thyroglossal duct attached to the tongue?
Your Answer: Foramen cecum
Explanation:The thyroglossal duct connects the thyroid gland to the tongue via the foramen caecum during embryonic development. The terminal sulcus, median sulcus, palatoglossal arch, and epiglottis are not connected to the thyroid gland.
Understanding Thyroglossal Cysts
Thyroglossal cysts are named after the thyroid and tongue, which are the two structures involved in their development. During embryology, the thyroid gland develops from the floor of the pharynx and descends into the neck, connected to the tongue by the thyroglossal duct. The foramen cecum is the point of attachment of the thyroglossal duct to the tongue. Normally, the thyroglossal duct atrophies, but in some people, it may persist and give rise to a thyroglossal duct cyst.
Thyroglossal cysts are more common in patients under 20 years old and are usually midline, between the isthmus of the thyroid and the hyoid bone. They move upwards with protrusion of the tongue and may be painful if infected. Understanding the embryology and presentation of thyroglossal cysts is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 44-year-old male singer visits his GP complaining of a hoarse voice that has persisted for a few weeks. He first noticed it after his thyroidectomy. Upon reviewing his post-thyroidectomy report, it was noted that he experienced a complication related to external laryngeal nerve injury. Which muscle's loss of innervation could be responsible for this patient's symptoms?
Your Answer: Posterior cricoarytenoid
Correct Answer: Cricothyroid
Explanation:The external laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is injured, it can result in paralysis of the cricothyroid muscle, which is often referred to as the tuning fork of the larynx. This can cause hoarseness in the patient. However, over time, the other muscles will compensate for the paralysis, and the hoarseness will improve. It is important to note that the recurrent laryngeal nerve is responsible for innervating the rest of the muscles.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Incorrect
-
A 14-year-old boy comes to the clinic complaining of ear pain. He mentions having some crusty discharge at the entrance of his ear canal when he woke up this morning. He denies any hearing loss, dizziness, or other symptoms. He swims twice a week. Upon examination, he has no fever. The auricle of his ear appears red, and pressing on the tragus causes discomfort. Otoscopy reveals an erythematous canal with a small amount of yellow discharge. The superior edge of the tympanic membrane is also red, but there is no bulging or fluid in the middle ear. Which bone articulates with the bone that is typically seen pressing against the tympanic membrane?
Your Answer: Stapes
Correct Answer: Incus
Explanation:The middle bone of the 3 ossicles is known as the incus. During otoscopy, the malleus can be observed in contact with the tympanic membrane and it connects with the incus medially.
The ossicles, which are the 3 bones in the middle ear, are arranged from lateral to medial as follows:
Malleus: This is the most lateral of the ossicles. The handle and lateral process of the malleus attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus connects with the incus. The term ‘malleus’ is derived from the Latin word for ‘hammer’.
Incus: The incus is positioned between and connects with the other two ossicles. The body of the incus connects with the malleus, while the long limb of the bone connects with the stapes. The term ‘incus’ is derived from the Latin word for ‘anvil’.Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Correct
-
A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?
Your Answer: 88%-92%
Explanation:As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.
Guidelines for Oxygen Therapy in Emergency Situations
In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.
The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.
For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.
The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.
Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Correct
-
A 53-year-old man arrives at the Emergency Department with jaundice and a distended abdomen. He has a history of alcoholism and has been hospitalized before for acute alcohol withdrawal. During the examination, you observe spider naevi on his upper chest wall and detect a shifting dullness on abdominal percussion, indicating ascites. Further imaging and investigation reveal portal vein hypertension and cirrhosis.
Where does this vessel start?Your Answer: L1
Explanation:Portal hypertension is commonly caused by liver cirrhosis, often due to alcohol abuse. The causes of this condition can be categorized as pre-hepatic, hepatic, or post-hepatic, depending on the location of the underlying pathology. The primary factors contributing to portal hypertension are increased vascular resistance in the portal venous system and elevated blood flow in the portal veins. The portal vein originates at the transpyloric plane, which is situated at the level of the body of L1. Other significant structures found at this location include the neck of the pancreas, the spleen, the duodenojejunal flexure, and the superior mesenteric artery.
The Transpyloric Plane and its Anatomical Landmarks
The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.
Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.
In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.
Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Incorrect
-
A 26-year-old man has been referred to ENT by his doctor as he has swallowed a small chicken bone that feels stuck in his throat. During laryngoscopy, a chicken bone is observed lodged in the piriform recess. Which of the following nerves is most likely to be affected by the chicken bone?
Your Answer: External laryngeal nerve
Correct Answer: Internal laryngeal nerve
Explanation:When foreign objects get stuck in the piriform recess, particularly sharp items like bones from fish or chicken, they can harm the internal laryngeal nerve that lies beneath the mucous membrane in that area. Retrieving these objects also poses a risk of damaging the internal laryngeal nerve. However, the other nerves are not likely to be impacted.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Correct
-
A 70-year-old man visits his primary care physician with complaints of hearing difficulties. He states that he has been increasingly struggling to hear his wife's conversations for the past six months. He is concerned that this problem will worsen and eventually lead to complete hearing loss, making it difficult for him to communicate with his children over the phone. His wife is also distressed by the situation, as he frequently asks her to turn up the volume on the television. The man has no history of exposure to loud noises and has well-controlled hypertension. He is a retired police officer and currently resides with his wife. What is the primary pathology underlying this man's most likely diagnosis?
Your Answer: Degeneration of the cells at the cochlear base
Explanation:The patient has a gradual-onset hearing loss, which is most likely due to presbycusis, an aging-related sensorineural hearing loss. This condition has multiple causes, including environmental factors like noise pollution and biological factors like genetics and oxidative stress. Damage to the organ of Corti stereocilia from exposure to sudden loud noises can also cause hearing loss, which is typically sudden and associated with a history of exposure to loud noises. Other conditions that can cause hearing loss include cholesteatoma, which is due to the accumulation of keratin debris in the middle ear, and otosclerosis, which is characterized by the overgrowth of bone in the middle ear.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Correct
-
A 27-year-old male admitted to the ICU after a car accident has a pneumothorax. Using a bedside spirometer, his inspiratory and expiratory volumes were measured. What is the typical tidal volume for a male of his age?
Your Answer: 500ml
Explanation:The amount of air that is normally breathed in and out without any extra effort is called tidal volume, which is 500ml in males and 350ml in females.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)