-
Question 1
Incorrect
-
Which type of brain lesion is typically associated with Alexia without agraphia?
Your Answer: Middle cerebral artery
Correct Answer: Posterior cerebral artery
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 2
Incorrect
-
From which region of the developing brain does the retina originate?
Your Answer: Rhombencephalon
Correct Answer: Diencephalon
Explanation:The retina and optic nerves originate from protrusions of the diencephalon known as eye vesicles during development.
Neurodevelopment: Understanding Brain Development
The development of the central nervous system begins with the neuroectoderm, a specialized region of ectoderm. The embryonic brain is divided into three areas: the forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon). The prosencephalon further divides into the telencephalon and diencephalon, while the hindbrain subdivides into the metencephalon and myelencephalon.
The telencephalon, of cerebrum, consists of the cerebral cortex, underlying white matter, and the basal ganglia. The diencephalon includes the prethalamus, thalamus, hypothalamus, subthalamus, epithalamus, and pretectum. The mesencephalon comprises the tectum, tegmentum, ventricular mesocoelia, cerebral peduncles, and several nuclei and fasciculi.
The rhombencephalon includes the medulla, pons, and cerebellum, which can be subdivided into a variable number of transversal swellings called rhombomeres. In humans, eight rhombomeres can be distinguished, from caudal to rostral: Rh7-Rh1 and the isthmus. Rhombomeres Rh7-Rh4 form the myelencephalon, while Rh3-Rh1 form the metencephalon.
Understanding neurodevelopment is crucial in comprehending brain development and its complexities. By studying the different areas of the embryonic brain, we can gain insight into the formation of the central nervous system and its functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 3
Correct
-
A 65-year-old woman passed away unexpectedly due to a heart attack. She had been experiencing significant difficulties with her short-term memory, which had been impacting her daily activities. Upon conducting an autopsy of her brain, it was discovered that she had widespread cerebral atrophy, as well as numerous neurofibrillary tangles and neuritic plaques. What is the probable diagnosis?
Your Answer: Alzheimer's disease
Explanation:Neurofibrillary tangles and neuritic (senile) plaques are commonly found in the brains of elderly individuals, but they are not present in Lewy body dementia. Pick’s disease is characterized by the presence of Pick’s bodies and knife blade atrophy. Creutzfeldt-Jakob disease (CJD) is identified by the spongy appearance of the grey matter in the cerebral cortex due to multiple vacuoles. If an individual experiences short-term memory problems that affect their daily life, it may indicate the presence of dementia. Alzheimer’s disease is characterized by extensive tangles and plaques in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 4
Correct
-
Which condition is linked to tardive dyskinesia?
Your Answer: Hyperkinetic dysarthria
Explanation:Dysarthria is a speech disorder that affects the volume, rate, tone, of quality of spoken language. There are different types of dysarthria, each with its own set of features, associated conditions, and localisation. The types of dysarthria include spastic, flaccid, hypokinetic, hyperkinetic, and ataxic.
Spastic dysarthria is characterised by explosive and forceful speech at a slow rate and is associated with conditions such as pseudobulbar palsy and spastic hemiplegia.
Flaccid dysarthria, on the other hand, is characterised by a breathy, nasal voice and imprecise consonants and is associated with conditions such as myasthenia gravis.
Hypokinetic dysarthria is characterised by slow, quiet speech with a tremor and is associated with conditions such as Parkinson’s disease.
Hyperkinetic dysarthria is characterised by a variable rate, inappropriate stoppages, and a strained quality and is associated with conditions such as Huntington’s disease, Sydenham’s chorea, and tardive dyskinesia.
Finally, ataxic dysarthria is characterised by rapid, monopitched, and slurred speech and is associated with conditions such as Friedreich’s ataxia and alcohol abuse. The localisation of each type of dysarthria varies, with spastic and flaccid dysarthria affecting the upper and lower motor neurons, respectively, and hypokinetic, hyperkinetic, and ataxic dysarthria affecting the extrapyramidal and cerebellar regions of the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 5
Incorrect
-
Which type of dementia is characterized by the presence of clumps of aggregated alpha synuclein in the cell bodies and axons of neurons?
Your Answer: Pick's disease
Correct Answer: Lewy body dementia
Explanation:Alpha-synuclein is the main component of Lewy bodies, which are inclusion bodies found in the cytoplasm of neurons and appear eosinophilic.
Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.
Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.
In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.
Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 6
Incorrect
-
What is the condition that occurs due to the deterioration of the caudate nucleus?
Your Answer:
Correct Answer: Huntington's
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 7
Incorrect
-
Which language assessment is considered a neuropsychological test?
Your Answer:
Correct Answer: Token test
Explanation:The neuropsychological assessment includes the token test, which is a language test that uses various tokens, such as differently coloured rectangles and circular discs. The subject is given verbal instructions of increasing complexity to perform tasks with these tokens, and it is a sensitive measure of language comprehension impairment, particularly in cases of aphasia. Additionally, there are several tests of executive function that assess frontal lobe function, including the Stroop test, Tower of London test, Wisconsin card sorting test, Cognitive estimates test, Six elements test, Multiple errands task, and Trails making test.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 8
Incorrect
-
What type of dysarthria is typically caused by damage to the lower motor neurons related to a tumor?
Your Answer:
Correct Answer: Flaccid dysarthria
Explanation:Dysarthria is a speech disorder that affects the volume, rate, tone, of quality of spoken language. There are different types of dysarthria, each with its own set of features, associated conditions, and localisation. The types of dysarthria include spastic, flaccid, hypokinetic, hyperkinetic, and ataxic.
Spastic dysarthria is characterised by explosive and forceful speech at a slow rate and is associated with conditions such as pseudobulbar palsy and spastic hemiplegia.
Flaccid dysarthria, on the other hand, is characterised by a breathy, nasal voice and imprecise consonants and is associated with conditions such as myasthenia gravis.
Hypokinetic dysarthria is characterised by slow, quiet speech with a tremor and is associated with conditions such as Parkinson’s disease.
Hyperkinetic dysarthria is characterised by a variable rate, inappropriate stoppages, and a strained quality and is associated with conditions such as Huntington’s disease, Sydenham’s chorea, and tardive dyskinesia.
Finally, ataxic dysarthria is characterised by rapid, monopitched, and slurred speech and is associated with conditions such as Friedreich’s ataxia and alcohol abuse. The localisation of each type of dysarthria varies, with spastic and flaccid dysarthria affecting the upper and lower motor neurons, respectively, and hypokinetic, hyperkinetic, and ataxic dysarthria affecting the extrapyramidal and cerebellar regions of the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 9
Incorrect
-
What proportion of all multiple sclerosis cases is accounted for by primary progressive multiple sclerosis?
Your Answer:
Correct Answer: 10%
Explanation:Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 10
Incorrect
-
Which factor is most closely linked to the development of dementia in individuals with HIV?
Your Answer:
Correct Answer: Monocyte infiltration and microglial activation
Explanation:The strongest association with HIV dementia is the infiltration of monocytes and activation of microglia in the brain. While the presence of HIV encephalopathy is somewhat linked to HIV associated dementia, the extent of monocyte infiltration and microglial activation is the best indicator of AIDS dementia. Microglia can cause damage to neurons by releasing oxidative radicals, nitric oxide, and cytokines. The correlation between viral load and HAD is not significant. Astrocytes have limited susceptibility to HIV infection, and neuronal infection is rare and unlikely to have a significant impact on HIV-related CNS disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 11
Incorrect
-
What waveform represents a frequency range of 8-12Hz?
Your Answer:
Correct Answer: Alpha
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 12
Incorrect
-
What is a true statement about histamine?
Your Answer:
Correct Answer: It is metabolised by histamine methyltransferase
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 13
Incorrect
-
Which statement about dementia pugilistica is accurate?
Your Answer:
Correct Answer: Symptoms may result from a single traumatic brain injury
Explanation:Dementia pugilistica, also known as CTE, is categorized as a tauopathy, which is a type of neurodegenerative disease that involves the accumulation of tau protein into NFTs of gliofibrillary tangles in the brain. While it commonly occurs due to repeated brain injuries, it can also develop from a single traumatic event, as reported by Smith in 2013.
Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 14
Incorrect
-
In what type of epilepsy is it most common to experience an aura?
Your Answer:
Correct Answer: Temporal lobe
Explanation:This question is presented in two variations on the exam, with one implying that auras are primarily linked to temporal lobe epilepsy and the other to complex partial seizures. In reality, partial seizures are most commonly associated with auras compared to other types of seizures. While partial seizures can originate in any lobe of the brain, those that arise in the temporal lobe are most likely to produce an aura. Therefore, both versions of the question are accurate.
Epilepsy and Aura
An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.
In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.
Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 15
Incorrect
-
A 62-year-old man experiences a stroke caused by a ruptured berry aneurysm in the middle cerebral artery. What is the most sensitive test to assess the affected lobe?
Your Answer:
Correct Answer: Verbal fluency
Explanation:Frontal lobe damage can be best detected through tests of verbal fluency, such as the FAS Verbal Fluency Test, as the anterior cerebral artery supplies the frontal lobes and medial aspects of the parietal and occipital lobes, which are responsible for this function.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 16
Incorrect
-
With what are balloon cells commonly linked?
Your Answer:
Correct Answer: Pick's disease
Explanation:Pick’s disease is characterized by swollen and enlarged neurons that have a ballooned appearance, which is why they are commonly referred to as balloon cells. It is important to note that the term ‘balloon cell’ is a general histological term used to describe swollen cells that are often observed in cerebral degeneration. While they can be seen in various conditions, they are particularly prevalent in Pick’s disease and are considered a hallmark feature of the disorder.
Frontotemporal Lobar Degeneration (FTLD) is a pathological term that refers to a group of neurodegenerative disorders that affect the frontal and temporal lobes of the brain. FTLD is classified into several subtypes based on the main protein component of neuronal and glial abnormal inclusions and their distribution. The three main proteins associated with FTLD are Tau, TDP-43, and FUS. Each FTD clinical phenotype has been associated with different proportions of these proteins. Macroscopic changes in FTLD include atrophy of the frontal and temporal lobes, with focal gyral atrophy that resembles knives. Microscopic changes in FTLD-Tau include neuronal and glial tau aggregation, with further sub-classification based on the existence of different isoforms of tau protein. FTLD-TDP is characterized by cytoplasmic inclusions of TDP-43 in neurons, while FTLD-FUS is characterized by cytoplasmic inclusions of FUS.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 17
Incorrect
-
From which neurotransmitters are the following pairs synthesised, using tyrosine as a precursor?
Your Answer:
Correct Answer: Norepinephrine and dopamine
Explanation:Norepinephrine: Synthesis, Release, and Breakdown
Norepinephrine is synthesized from tyrosine through a series of enzymatic reactions. The first step involves the conversion of tyrosine to L-DOPA by tyrosine hydroxylase. L-DOPA is then converted to dopamine by DOPA decarboxylase. Dopamine is further converted to norepinephrine by dopamine beta-hydroxylase. Finally, norepinephrine is converted to epinephrine by phenylethanolamine-N-methyltransferase.
The primary site of norepinephrine release is the locus coeruleus, also known as the blue spot, which is located in the pons. Once released, norepinephrine is broken down by two enzymes: catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). These enzymes play a crucial role in regulating the levels of norepinephrine in the body.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 18
Incorrect
-
Which of the following ocular presentations is atypical for multiple sclerosis?
Your Answer:
Correct Answer: Raised intraocular pressure
Explanation:There is no correlation between multiple sclerosis and raised intraocular pressure, which is known as glaucoma when accompanied by visual field loss.
Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 19
Incorrect
-
Which serotonin receptor is associated with regulating circadian rhythms?
Your Answer:
Correct Answer: 5HT-7
Explanation:Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 20
Incorrect
-
What is the main producer of serotonin in the brain?
Your Answer:
Correct Answer: Raphe nuclei
Explanation:The pituitary gland is situated in the sella turcica, while the suprachiasmatic nucleus regulates circadian rhythms. Serotonin release in the brain is primarily sourced from the neurons of the raphe nuclei, which are located along the midline of the brainstem. The choroid plexus produces cerebrospinal fluid, and enterochromaffin cells in the gut contain the majority of the body’s serotonin.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 21
Incorrect
-
Can you identify the neurotransmitter that is often studied and also referred to as prolactin-inhibiting factor (PIF)?
Your Answer:
Correct Answer: Dopamine
Explanation:Prolactin secretion from the anterior pituitary gland is inhibited by dopamine, which is also referred to as prolactin-inhibiting factor (PIF) and prolactin-inhibiting hormone (PIH). The reason why antipsychotic medications are linked to hyperprolactinaemia is due to the antagonism of dopamine receptors. On the other hand, serotonin and melatonin seem to stimulate prolactin secretion. While animal studies have indicated that adrenaline and noradrenaline can decrease prolactin secretion, their effect is not as significant as that of dopamine.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 22
Incorrect
-
What type of brain tumor is commonly located on the ventricular walls?
Your Answer:
Correct Answer: Ependymoma
Explanation:Cerebral Tumours
The most common brain tumours in adults, listed in order of frequency, are metastatic tumours, glioblastoma multiforme, anaplastic astrocytoma, and meningioma. On the other hand, the most common brain tumours in children, listed in order of frequency, are astrocytoma, medulloblastoma, and ependymoma.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 23
Incorrect
-
Which cranial nerve is solely responsible for either sensory of motor functions and does not have a combination of both?
Your Answer:
Correct Answer: Abducens
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 24
Incorrect
-
Which feature is not very useful in distinguishing between Parkinson's disease and progressive supranuclear palsy?
Your Answer:
Correct Answer: Pallor of the substantia nigra
Explanation:Both conditions exhibit pallor of the substantia nigra. However, in PSP, the locus coeruleus is typically unaffected, whereas in Parkinson’s disease, it shows pallor. Therefore, if there is pallor in this area, it would indicate Parkinson’s disease.
Pathology of Progressive Supranuclear Palsy
Progressive supranuclear palsy is a rare disorder that affects gait and balance, often accompanied by changes in mood, behavior, and dementia. The macroscopic changes observed in this condition include pallor of the substantia nigra (with sparing of the locus coeruleus), mild midbrain atrophy, atrophy of the superior cerebellar peduncles, and discolouration of the dentate nucleus. On a microscopic level, gliosis and the presence of neurofibrillary tangles and tau inclusions in both astrocytes and oligodendrocytes (coiled bodies) are observed, particularly in the substantia nigra, subthalamic nucleus, and globus pallidus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 25
Incorrect
-
In which part of the body is the nucleus of Meynert situated?
Your Answer:
Correct Answer: Substantia innominata
Explanation:The nucleus of Meynert, located in the substantia innominata of the basal forebrain beneath the thalamus and lentiform nucleus, is a cluster of neurons that serves as the primary source of acetylcholine in the brain. In Alzheimer’s disease, the nucleus of Meynert undergoes atrophy, resulting in a decrease in acetylcholine levels. This explains why cholinesterase inhibitors, which increase acetylcholine levels, are effective in treating Alzheimer’s.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 26
Incorrect
-
What is a true statement about multiple sclerosis?
Your Answer:
Correct Answer: The mean age of onset is between 20 and 40
Explanation:Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 27
Incorrect
-
Which cranial nerve nuclei would be affected by a midbrain lesion?
Your Answer:
Correct Answer: Oculomotor
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 28
Incorrect
-
Which waves are present at the onset of stage 2 sleep, in addition to k-complexes?
Your Answer:
Correct Answer: Sigma
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 29
Incorrect
-
From which embryonic structure does the thalamus originate?
Your Answer:
Correct Answer: Diencephalon
Explanation:Neurodevelopment: Understanding Brain Development
The development of the central nervous system begins with the neuroectoderm, a specialized region of ectoderm. The embryonic brain is divided into three areas: the forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon). The prosencephalon further divides into the telencephalon and diencephalon, while the hindbrain subdivides into the metencephalon and myelencephalon.
The telencephalon, of cerebrum, consists of the cerebral cortex, underlying white matter, and the basal ganglia. The diencephalon includes the prethalamus, thalamus, hypothalamus, subthalamus, epithalamus, and pretectum. The mesencephalon comprises the tectum, tegmentum, ventricular mesocoelia, cerebral peduncles, and several nuclei and fasciculi.
The rhombencephalon includes the medulla, pons, and cerebellum, which can be subdivided into a variable number of transversal swellings called rhombomeres. In humans, eight rhombomeres can be distinguished, from caudal to rostral: Rh7-Rh1 and the isthmus. Rhombomeres Rh7-Rh4 form the myelencephalon, while Rh3-Rh1 form the metencephalon.
Understanding neurodevelopment is crucial in comprehending brain development and its complexities. By studying the different areas of the embryonic brain, we can gain insight into the formation of the central nervous system and its functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 30
Incorrect
-
What is a true statement about microglia?
Your Answer:
Correct Answer: It is mesodermal in origin
Explanation:Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 31
Incorrect
-
A person who struggles with reproducing intersecting pentagons on the MMSE at an older age is likely to experience difficulties with which of the following?
Your Answer:
Correct Answer: Non dominant parietal lobe
Explanation:The inability to accurately replicate intersecting pentagons may indicate a constructional apraxia, which is a symptom of non-dominant parietal lobe dysfunction.
Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 32
Incorrect
-
What is a minimally invasive method that utilizes radioisotopes?
Your Answer:
Correct Answer: SPECT
Explanation:Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 33
Incorrect
-
What brain area is in charge of processing sensory information such as pain, pressure, and temperature?
Your Answer:
Correct Answer: Parietal lobe
Explanation:The parietal lobes interpret sensations such as pain, pressure, and temperature. The cerebellum controls balance and voluntary movement. Executive function is managed by the frontal lobes. The occipital lobes coordinate visual processing, while the temporal lobes are responsible for language comprehension.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 34
Incorrect
-
Which reflex involves the oculomotor, trochlear, and abducent nerve in its motor component?
Your Answer:
Correct Answer: Vestibulo-ocular
Explanation:Cranial Nerve Reflexes
When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:
– Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Jaw jerk: involves the trigeminal nerve (sensory and motor).
– Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
– Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 35
Incorrect
-
What is a substance that activates GABA-B receptors called?
Your Answer:
Correct Answer: Baclofen
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 36
Incorrect
-
You are asked to review a child on the ward who the staff noted had a sudden and brief (one minute) episode whereby they went into what they described as a trance-like state. During this time the child was unresponsive and was seen to be picking aimlessly at their clothes. Following this episode the child did not recall being unresponsive but did report that before this happened they felt a strange sense of unfamiliarity. Which of the following epilepsy types would you most suspect?:
Your Answer:
Correct Answer: Complex partial seizure
Explanation:The indication of a complex partial seizure is strongly implied by the absence of knowledge regarding aura.
Epilepsy and Aura
An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.
In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.
Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 37
Incorrect
-
Which enzyme converts L-DOPA to dopamine?
Your Answer:
Correct Answer: DOPA decarboxylase
Explanation:Tyrosine is converted to L-DOPA by the enzyme tyrosine hydroxylase. L-DOPA is then converted to dopamine by the enzyme dopa decarboxylase.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 38
Incorrect
-
A researcher studying early childhood development is interested in the formation of the nervous system. What is the initial step in the development of the nervous system?
Your Answer:
Correct Answer: Formation of the neural groove
Explanation:The nervous system in embryos develops from the neural plate, which is a thickening of the ectoderm. The first step in this process is the formation of the neural groove, which is then surrounded by neural folds. These folds gradually come together and fuse to form the neural tube. The neural crest, which is made up of parts of the neural ectoderm, is formed from the rolled-up sides of the neural tube and helps in the development of the peripheral nervous system. The mesencephalon, of midbrain, is formed from the second vesicle of the neural tube. This process of neural development is essential for the proper functioning of the nervous system in later life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 39
Incorrect
-
Which interleukin has been consistently found to be present in higher levels in individuals with depression compared to those without depression?
Your Answer:
Correct Answer: IL-6
Explanation:Inflammatory Cytokines and Mental Health
Research has suggested that an imbalance in the immune system, particularly the pro-inflammatory cytokines, may play a significant role in the development of common mental disorders. The strongest evidence is found in depression, where studies have shown increased levels of inflammatory markers, such as interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and c-reactive protein (CRP), in depressed individuals compared to healthy controls (Santoft, 2020).
While most studies have focused on the differences in inflammatory markers between depressed and healthy individuals, some have also found a correlation between higher levels of inflammation and more severe depressive symptoms. The underlying cause of this chronic low-grade inflammation is not yet fully understood, but potential factors include psychosocial stress, physical inactivity, poor diet, smoking, obesity, altered gut permeability, disturbed sleep, and vitamin D deficiency.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 40
Incorrect
-
Which area is believed to have the primary role in psychosis due to an overabundance of dopaminergic activity?
Your Answer:
Correct Answer: Striatum
Explanation:The Dopamine Hypothesis is a theory that suggests that dopamine and dopaminergic mechanisms are central to schizophrenia. This hypothesis was developed based on observations that antipsychotic drugs provide at least some degree of D2-type dopamine receptor blockade and that it is possible to induce a psychotic episode in healthy subjects with pharmacological dopamine agonists. The hypothesis was further strengthened by the finding that antipsychotic drugs’ clinical effectiveness was directly related to their affinity for dopamine receptors. Initially, the belief was that the problem related to an excess of dopamine in the brain. However, later studies showed that the relationship between hypofrontality and low cerebrospinal fluid (CSF) dopamine metabolite levels indicates low frontal dopamine levels. Thus, there was a move from a one-sided dopamine hypothesis explaining all facets of schizophrenia to a regionally specific prefrontal hypodopaminergia and a subcortical hyperdopaminergia. In summary, psychosis appears to result from excessive dopamine activity in the striatum, while the negative symptoms seen in schizophrenia appear to result from too little dopamine activity in the frontal lobe. Antipsychotic medications appear to help by countering the effects of increased dopamine by blocking postsynaptic D2 receptors in the striatum.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 41
Incorrect
-
What is the structure that separates the frontal and parietal lobes above from the temporal lobe below?
Your Answer:
Correct Answer: The Sylvian fissure
Explanation:Gross Anatomy
The brain is divided into different lobes and regions by the many fissures of grooves on its surface. It is important to be aware of some anatomical landmarks such as the medial longitudinal fissure, which separates the brain into the right and left hemispheres. Another important landmark is the lateral sulcus of the Sylvian fissure, which divides the frontal and parietal lobes above from the temporal lobe below. Additionally, the central sulcus of the fissure of Rolando separates the frontal from the parietal lobe. Understanding these anatomical landmarks is crucial in identifying and locating different areas of the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 42
Incorrect
-
What condition is identified by the combination of Parkinsonism, cerebellar ataxia, and autonomic failure?
Your Answer:
Correct Answer: Multisystem atrophy
Explanation:Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 43
Incorrect
-
Which of the following is not an example of glial cells?
Your Answer:
Correct Answer: Purkinje cells
Explanation:The initial exam question erroneously included neurons as a potential answer instead of Purkinje cells. However, this was deemed too simplistic and was subsequently revised. It is important to note that glial cells serve as support cells for neurons, whereas Purkinje cells are a specific type of neuron and therefore cannot be classified as glial cells.
Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 44
Incorrect
-
What is believed to be the cause of the negative symptoms observed in individuals with schizophrenia?
Your Answer:
Correct Answer: Decreased dopaminergic activity in the frontal lobe
Explanation:Psychosis is associated with heightened dopaminergic activity in the striatum, while negative symptoms are linked to reduced dopaminergic activity in the frontal lobe.
The Dopamine Hypothesis is a theory that suggests that dopamine and dopaminergic mechanisms are central to schizophrenia. This hypothesis was developed based on observations that antipsychotic drugs provide at least some degree of D2-type dopamine receptor blockade and that it is possible to induce a psychotic episode in healthy subjects with pharmacological dopamine agonists. The hypothesis was further strengthened by the finding that antipsychotic drugs’ clinical effectiveness was directly related to their affinity for dopamine receptors. Initially, the belief was that the problem related to an excess of dopamine in the brain. However, later studies showed that the relationship between hypofrontality and low cerebrospinal fluid (CSF) dopamine metabolite levels indicates low frontal dopamine levels. Thus, there was a move from a one-sided dopamine hypothesis explaining all facets of schizophrenia to a regionally specific prefrontal hypodopaminergia and a subcortical hyperdopaminergia. In summary, psychosis appears to result from excessive dopamine activity in the striatum, while the negative symptoms seen in schizophrenia appear to result from too little dopamine activity in the frontal lobe. Antipsychotic medications appear to help by countering the effects of increased dopamine by blocking postsynaptic D2 receptors in the striatum.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 45
Incorrect
-
Which CNS histopathological characteristic is the most distinctive for prion diseases?
Your Answer:
Correct Answer: Spongiform (vacuolation) change
Explanation:The presence of spongiform (vacuolation) change is a highly specific indicator of prion diseases. While neuronal loss and gliosis are common in many CNS disorders, spongiform change is unique to prion diseases. This change is characterized by the appearance of vacuoles in the deep cortical layers, cerebellar cortex, of subcortical grey matter. Scar formation and acute immune responses are associated with reactive proliferation of astrocytes and microglia, respectively. In contrast, Alzheimer’s dementia is characterized by the presence of amyloid plaques.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 46
Incorrect
-
Which symptom is most commonly associated with occlusion of the posterior cerebral artery?
Your Answer:
Correct Answer: Contralateral homonymous hemianopia with macular sparing
Explanation:Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 47
Incorrect
-
What condition has been associated with decreased small interneurons in cortical layer II of the prefrontal cortex, which are believed to be related to the GABA system?
Your Answer:
Correct Answer: Schizophrenia
Explanation:The key to answering this question is identifying that it pertains to the prefrontal cortex, which is strongly linked to schizophrenia. Other conditions that are associated with abnormalities in this region include ADHD and bipolar disorder. Schizophrenia is characterized by changes in GABA function, including both release and uptake. Additionally, a decrease in small interneurons in cortical layer II of the prefrontal cortex is believed to contribute to these alterations. Sedvall’s 2002 work on the pathophysiological mechanisms of schizophrenia provides further insight into these issues.
Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 48
Incorrect
-
Which one of these organs is not classified as a circumventricular organ?
Your Answer:
Correct Answer: The olive
Explanation:Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 49
Incorrect
-
What neuropathological evidence would provide the strongest support for a diagnosis of chronic traumatic encephalopathy?
Your Answer:
Correct Answer: Tau accumulations, predominantly around small intracortical blood vessels
Explanation:Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 50
Incorrect
-
Which waveform represents a frequency that is less than 4 Hz?
Your Answer:
Correct Answer: Delta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 51
Incorrect
-
From where does the nerve that originates in the medulla oblongata come?
Your Answer:
Correct Answer: Vagus
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 52
Incorrect
-
Disinhibition is most likely to occur as a result of dysfunction in which of the following regions?
Your Answer:
Correct Answer: Right frontal lobe
Explanation:Psychiatric and behavioral disturbances in individuals with frontal lobe lesions show a pattern of lateralization. Lesions in the left hemisphere are more commonly linked to depression, especially if they affect the prefrontal cortex’s dorsolateral region. Conversely, lesions in the right hemisphere are linked to impulsivity, disinhibition, and aggression.
Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 53
Incorrect
-
In which region of the monkey's cortex were mirror neurons initially identified?
Your Answer:
Correct Answer: Premotor cortex
Explanation:Visuomotor neurons known as mirror neurons are situated in the premotor cortex. These neurons were initially identified in a specific region of the premotor cortex in monkeys called area F5, but have since been observed in the inferior parietal lobule as well (Rizzolatti 2001).
Mirror Neurons: A Model for Imitation Learning
Mirror neurons are a unique type of visuomotor neurons that were first identified in the premotor cortex of monkeys in area F5. These neurons fire not only when the monkey performs a specific action but also when it observes another individual, whether it is a monkey of a human, performing a similar action. This discovery has led to the development of a model for understanding imitation learning.
Mirror neurons offer a fascinating insight into how humans and animals learn by imitation. They provide a neural mechanism that allows individuals to understand the actions of others and to replicate those actions themselves. This process is essential for social learning, as it enables individuals to learn from others and to adapt to their environment.
The discovery of mirror neurons has also led to new research in the field of neuroscience, as scientists seek to understand how these neurons work and how they can be used to improve our understanding of human behavior. As we continue to learn more about mirror neurons, we may be able to develop new therapies for individuals with social and communication disorders, such as autism.
Overall, mirror neurons are a fascinating area of research that has the potential to revolutionize our understanding of human behavior and learning. By studying these neurons, we may be able to unlock new insights into how we learn, communicate, and interact with others.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 54
Incorrect
-
How would you describe the condition of a patient who, after experiencing a stroke, is unable to identify familiar objects despite having no sensory impairment?
Your Answer:
Correct Answer: Visual agnosia
Explanation:Visual Agnosia: Inability to Recognize Familiar Objects
Visual agnosia is a neurological condition that affects a person’s ability to recognize familiar objects, even though their sensory apparatus is functioning normally. This disorder can be further classified into different subtypes, with two of the most important being prosopagnosia and simultanagnosia.
Prosopagnosia is the inability to identify faces, which can make it difficult for individuals to recognize family members, friends, of even themselves in a mirror. Simultanagnosia, on the other hand, is the inability to recognize a whole image, even though individual details may be recognized. This can make it challenging for individuals to understand complex scenes of navigate their environment.
Visual agnosia can be caused by various factors, including brain damage from injury of disease. Treatment options for this condition are limited, but some individuals may benefit from visual aids of cognitive therapy to improve their ability to recognize objects.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 55
Incorrect
-
What symptom indicates the presence of a cerebellar lesion?
Your Answer:
Correct Answer: Nystagmus
Explanation:Cerebellar Dysfunction: Symptoms and Signs
Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).
Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.
Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.
Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 56
Incorrect
-
What triggers the release of neurotransmitter from presynaptic vesicles into the synaptic cleft?
Your Answer:
Correct Answer: Calcium
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 57
Incorrect
-
What pathological finding is indicative of multisystem atrophy?
Your Answer:
Correct Answer: Shrinkage of the putamen
Explanation:Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 58
Incorrect
-
What is the entity that carries out phagocytosis in the central nervous system?
Your Answer:
Correct Answer: Microglia
Explanation:Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 59
Incorrect
-
Which type of axon is responsible for the intense and sudden pain experienced during an injury?
Your Answer:
Correct Answer: A-delta
Explanation:Primary Afferent Axons: Conveying Information about Touch and Pain
Primary afferent axons play a crucial role in conveying information about touch and pain from the surface of the body to the spinal cord and brain. These axons can be classified into four types based on their functions: A-alpha (proprioception), A-beta (touch), A-delta (pain and temperature), and C (pain, temperature, and itch). While all A axons are myelinated, C fibers are unmyelinated.
A-delta fibers are responsible for the sharp initial pain, while C fibers are responsible for the slow, dull, longer-lasting second pain. Understanding the different types of primary afferent axons and their functions is essential in diagnosing and treating various sensory disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 60
Incorrect
-
What condition is most commonly associated with slow (<2.5 Hz) generalized spike-and-wave discharges on the EEG?
Your Answer:
Correct Answer: Atypical absence seizures
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 61
Incorrect
-
What is a true statement about the planum temporale?
Your Answer:
Correct Answer: Planum temporale asymmetry is more prominent in males than in females
Explanation:Cerebral Asymmetry in Planum Temporale and its Implications in Language and Auditory Processing
The planum temporale, a triangular region in the posterior superior temporal gyrus, is a highly lateralized brain structure involved in language and music processing. Studies have shown that the planum temporale is up to ten times larger in the left cerebral hemisphere than the right, with this asymmetry being more prominent in men. This asymmetry can be observed in gestation and is present in up to 70% of right-handed individuals.
Recent research suggests that the planum temporale also plays an important role in auditory processing, specifically in representing the location of sounds in space. However, reduced planum temporale asymmetry has been observed in individuals with dyslexia, stuttering, and schizophrenia. These findings highlight the importance of cerebral asymmetry in the planum temporale and its implications in language and auditory processing.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 62
Incorrect
-
Which statement about the dopamine pathways is incorrect?
Your Answer:
Correct Answer: The tuberoinfundibular pathway connects the hypothalamus to the pineal gland
Explanation:The tuberoinfundibular pathway links the hypothalamus with the pituitary gland, rather than the pineal gland.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 63
Incorrect
-
What is a correct statement about the blood brain barrier?
Your Answer:
Correct Answer: Nasally administered drugs can bypass the blood brain barrier
Explanation:Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 64
Incorrect
-
What is the name of the bundle of association fibers that connects the frontal and temporal lobes and is crucial for language repetition?
Your Answer:
Correct Answer: Arcuate fasciculus
Explanation:Association fibres refer to axons that link different cortical areas within the same hemisphere of the brain. The middle longitudinal fasciculus is a white matter tract that connects the inferior parietal lobule to the temporal cortices. The uncinate fasciculus is a relatively short pathway that connects the anterior temporal areas to the inferior frontal areas. The inferior longitudinal fasciculus and inferior fronto-occipital fasciculus fibre pathways are believed to connect the occipital cortices to the anterior temporal and inferior frontal cortices (note that the inferior fronto-occipital fasciculus pathway is also known as the inferior occipitofrontal fasciculus). The cingulum is a group of white matter fibres that extend from the cingulate gyrus to the entorhinal cortex, facilitating communication between different parts of the limbic system.
Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 65
Incorrect
-
Which cell types are responsible for the formation of cerebrospinal fluid?
Your Answer:
Correct Answer: Ependymal cells
Explanation:Cerebrospinal Fluid: Formation, Circulation, and Composition
Cerebrospinal fluid (CSF) is produced by ependymal cells in the choroid plexus of the lateral, third, and fourth ventricles. It is constantly reabsorbed, so only a small amount is present at any given time. CSF occupies the space between the arachnoid and pia mater and passes through various foramina and aqueducts to reach the subarachnoid space and spinal cord. It is then reabsorbed by the arachnoid villi and enters the dural venous sinuses.
The normal intracerebral pressure (ICP) is 5 to 15 mmHg, and the rate of formation of CSF is constant. The composition of CSF is similar to that of brain extracellular fluid (ECF) but different from plasma. CSF has a higher pCO2, lower pH, lower protein content, lower glucose concentration, higher chloride and magnesium concentration, and very low cholesterol content. The concentration of calcium and potassium is lower, while the concentration of sodium is unchanged.
CSF fulfills the role of returning interstitial fluid and protein to the circulation since there are no lymphatic channels in the brain. The blood-brain barrier separates CSF from blood, and only lipid-soluble substances can easily cross this barrier, maintaining the compositional differences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 66
Incorrect
-
What is the term used to describe the inability to perceive multiple objects in the visual field simultaneously?
Your Answer:
Correct Answer: Simultanagnosia
Explanation:Agnosia is a condition where a person loses the ability to recognize objects, persons, sounds, shapes, of smells, despite having no significant memory loss of defective senses. There are different types of agnosia, such as prosopagnosia (inability to recognize familiar faces), anosognosia (inability to recognize one’s own condition/illness), autotopagnosia (inability to orient parts of the body), phonagnosia (inability to recognize familiar voices), simultanagnosia (inability to appreciate two objects in the visual field at the same time), and astereoagnosia (inability to recognize objects by touch).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 67
Incorrect
-
In which region of the brain is the ventral tegmental area situated?
Your Answer:
Correct Answer: Midbrain
Explanation:The Role of the Ventral Tegmental Area in Reward and Pleasure
The midbrain contains a cluster of dopaminergic cells known as the ventral tegmental area (VTA), which plays a crucial role in the experience of reward and pleasure. These cells are involved in the release of dopamine, a neurotransmitter that is associated with feelings of pleasure and motivation. The VTA is activated in response to various stimuli, such as food, sex, and drugs, and is responsible for the pleasurable sensations that accompany these experiences. Dysfunction in the VTA has been linked to addiction and other disorders related to reward processing. Understanding the role of the VTA in reward and pleasure is essential for developing effective treatments for these conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 68
Incorrect
-
Which of the options below does not act as a blocker for the serotonin transporter (SERT), also known as the monoamine transporter?
Your Answer:
Correct Answer: Monoamine oxidase inhibitors
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 69
Incorrect
-
In which condition is the presence of regular, rapid, and generalized spike and wave activity observed?
Your Answer:
Correct Answer: Myoclonic epilepsy
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 70
Incorrect
-
Who is the neurologist that created a map of the cortex surface with specific areas?
Your Answer:
Correct Answer: Korbinian Brodmann
Explanation:The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 71
Incorrect
-
Which of the following diseases is not caused by prions?
Your Answer:
Correct Answer: Progressive supranuclear palsy
Explanation:Prion Diseases
Prion diseases are a group of rare and fatal neurodegenerative disorders that affect humans and animals. These diseases are caused by abnormal proteins called prions, which can cause normal proteins in the brain to fold abnormally and form clumps. This leads to damage and death of brain cells, resulting in a range of symptoms such as dementia, movement disorders, and behavioral changes.
Some of the most well-known prion diseases in humans include Creutzfeldt-Jakob disease, Kuru, Gerstman-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. Creutzfeldt-Jakob disease is the most common prion disease in humans, and it can occur sporadically, genetically, of through exposure to contaminated tissue. Kuru is a rare disease that was once prevalent in Papua New Guinea, and it was transmitted through cannibalism. Gerstman-Straussler-Scheinker syndrome is a rare genetic disorder that affects the nervous system, while Fatal Familial Insomnia is a rare inherited disorder that causes progressive insomnia and other neurological symptoms.
Despite extensive research, there is currently no cure for prion diseases, and treatment is mainly supportive. Prevention measures include avoiding exposure to contaminated tissue and practicing good hygiene.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 72
Incorrect
-
What type of MRI scan is available?
Your Answer:
Correct Answer: DTI
Explanation:Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 73
Incorrect
-
What area of the brain is affected in bilateral dysfunction that leads to Klüver-Bucy syndrome?
Your Answer:
Correct Answer: Amygdala
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 74
Incorrect
-
Which reflex involves the motor component of cranial nerve VII?
Your Answer:
Correct Answer: Corneal reflex
Explanation:Cranial Nerve Reflexes
When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:
– Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Jaw jerk: involves the trigeminal nerve (sensory and motor).
– Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
– Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 75
Incorrect
-
Which statement accurately describes the neurobiology of schizophrenia?
Your Answer:
Correct Answer: Structural brain abnormalities are present at the onset of illness
Explanation:Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 76
Incorrect
-
What is a true statement about neurofibrillary tangles?
Your Answer:
Correct Answer: They are composed of Tau protein
Explanation:Neurofibrillary tangles consist of insoluble clumps of Tau protein, which are made up of multiple strands. Since Tau is a microtubule-associated protein that plays a role in the structural processes of neurons, these tangles are always found within the cell.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 77
Incorrect
-
Which part of a neuron is accountable for generating energy?
Your Answer:
Correct Answer: Mitochondria
Explanation:Melanin
Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 78
Incorrect
-
From which substance is gamma-aminobutyric acid synthesized?
Your Answer:
Correct Answer: Glutamate
Explanation:Glutamate is the precursor for the synthesis of GABA.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 79
Incorrect
-
A 70-year-old individual presents with a fluent dysphasia and inability to understand instructions. What is the probable location of arterial blockage?
Your Answer:
Correct Answer: Inferior division of middle cerebral artery (dominant hemisphere)
Explanation:Wernicke’s aphasia is caused by a blockage in the inferior division of the middle cerebral artery, which provides blood to the temporal cortex (specifically, the posterior superior temporal gyrus of ‘Wernicke’s area’). This type of aphasia is characterized by fluent speech, but with significant comprehension difficulties. On the other hand, Broca’s aphasia is considered a non-fluent expressive aphasia, resulting from damage to Brodmann’s area in the frontal lobe.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 80
Incorrect
-
Which of the following indicates the presence of a dominant parietal lobe injury?
Your Answer:
Correct Answer: Finger agnosia
Explanation:Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 81
Incorrect
-
What is a true statement about Broca's aphasia?
Your Answer:
Correct Answer: Main areas affected are Brodmann areas 44 and 45
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 82
Incorrect
-
What is the primary component of alpha-synuclein?
Your Answer:
Correct Answer: Lewy bodies
Explanation:Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.
Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.
In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.
Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 83
Incorrect
-
What statement accurately describes the trigeminal nerve?
Your Answer:
Correct Answer: It is a mixed nerve with both sensory and motor functions
Explanation:The trigeminal nerve, which is the largest cranial nerve, serves both sensory and motor functions. It is composed of three primary branches, namely the ophthalmic, maxillary, and mandibular branches. This nerve is responsible for providing sensory information to the face and head, while also controlling the muscles involved in chewing. On the other hand, the facial nerve is responsible for controlling the muscles that enable facial expressions and transmitting information from the front two-thirds of the tongue.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 84
Incorrect
-
What is a true statement about multisystem atrophy?
Your Answer:
Correct Answer: Associated Parkinson's symptoms respond poorly to levodopa
Explanation:Parkinson plus syndromes, including multisystem atrophy, exhibit a limited efficacy towards Parkinson’s treatment, such as levodopa.
Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 85
Incorrect
-
What is the hypothalamic nucleus that is responsible for regulating heat generation and conservation?
Your Answer:
Correct Answer: Posterior
Explanation:Functions of the Hypothalamus
The hypothalamus is a vital part of the brain that plays a crucial role in regulating various bodily functions. It receives and integrates sensory information about the internal environment and directs actions to control internal homeostasis. The hypothalamus contains several nuclei and fiber tracts, each with specific functions.
The suprachiasmatic nucleus (SCN) is responsible for regulating circadian rhythms. Neurons in the SCN have an intrinsic rhythm of discharge activity and receive input from the retina. The SCN is considered the body’s master clock, but it has multiple connections with other hypothalamic nuclei.
Body temperature control is mainly under the control of the preoptic, anterior, and posterior nuclei, which have temperature-sensitive neurons. As the temperature goes above 37ºC, warm-sensitive neurons are activated, triggering parasympathetic activity to promote heat loss. As the temperature goes below 37ºC, cold-sensitive neurons are activated, triggering sympathetic activity to promote conservation of heat.
The hypothalamus also plays a role in regulating prolactin secretion. Dopamine is tonically secreted by dopaminergic neurons that project from the arcuate nucleus of the hypothalamus into the anterior pituitary gland via the tuberoinfundibular pathway. The dopamine that is released acts on lactotrophic cells through D2-receptors, inhibiting prolactin synthesis. In the absence of pregnancy of lactation, prolactin is constitutively inhibited by dopamine. Dopamine antagonists result in hyperprolactinemia, while dopamine agonists inhibit prolactin secretion.
In summary, the hypothalamus is a complex structure that regulates various bodily functions, including circadian rhythms, body temperature, and prolactin secretion. Dysfunction of the hypothalamus can lead to various disorders, such as sleep-rhythm disorder, diabetes insipidus, hyperprolactinemia, and obesity.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 86
Incorrect
-
Which receptor is most likely to cause a feeling of nausea when stimulated?
Your Answer:
Correct Answer: 5HT-3
Explanation:Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 87
Incorrect
-
I'm sorry, as an AI language model, I cannot provide an answer without additional context. Please provide more information of clarify your question.
Your Answer:
Correct Answer: Wernicke's aphasia
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 88
Incorrect
-
Which structure is responsible for the secretion of glucocorticoids in the HPA axis?
Your Answer:
Correct Answer: The adrenal gland
Explanation:HPA Axis Dysfunction in Mood Disorders
The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.
In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.
Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.
In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.
Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 89
Incorrect
-
Which symptom is unlikely to be the first one noticed in a person with normal pressure hydrocephalus?
Your Answer:
Correct Answer: Headache
Explanation:Headache and other symptoms commonly associated with hydrocephalus may not be present in normal pressure hydrocephalus due to the fact that intracranial pressure does not typically remain elevated.
Normal Pressure Hydrocephalus
Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.
The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 90
Incorrect
-
What are the eosinophilic inclusion bodies observed in Alzheimer's Disease?
Your Answer:
Correct Answer: Hirano bodies
Explanation:Pathology Findings in Psychiatry
There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.
Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.
Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.
Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.
Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.
LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.
Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.
Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 91
Incorrect
-
Which brain system enables the integration of emotional sensory information between the cortex and hypothalamus?
Your Answer:
Correct Answer: Papez circuit
Explanation:In 1937, James Papez proposed a neural circuit that explained how emotional experiences occur in the brain. According to Papez, sensory messages related to emotional stimuli are first received by the thalamus, which then directs them to both the cortex (stream of thinking) and hypothalamus (stream of feeling). The cingulate cortex integrates this information from the hypothalamus and sensory cortex, leading to emotional experiences. The output via the hippocampus and hypothalamus allows cortical control of emotional responses. This circuit has since been reconceptualized as the limbic system.
The medial longitudinal fasciculus carries fibres from cranial nerves III, IV and IV. The nucleus accumbens plays a major role in the reward circuit, while the somatosensory cortex is involved in processing pain. The basal ganglia are involved in voluntary motor control.
Overall, the Papez circuit theory provides a framework for understanding the functional neuroanatomy of emotion. It highlights the importance of the limbic system in emotional experiences and the role of various brain regions in processing different aspects of emotional stimuli.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 92
Incorrect
-
Which one of these pathways is not associated with dopamine?
Your Answer:
Correct Answer: Limbostriatal pathway
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 93
Incorrect
-
A 45-year-old man experiences a stroke caused by a ruptured berry aneurysm in the middle cerebral artery.
What tests would you anticipate to show abnormalities?Your Answer:
Correct Answer: Luria's motor test
Explanation:Damage to the frontal lobe can impact sequencing abilities, as evidenced by Luria’s motor test which involves performing a sequence of fist-edge-palm movements. Additionally, the anterior cerebral artery is responsible for supplying blood to the frontal lobes.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 94
Incorrect
-
What is the enzyme responsible for converting 5-hydroxytryptophan into serotonin?
Your Answer:
Correct Answer: L-aromatic amino acid decarboxylase
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 95
Incorrect
-
What is the purpose of the blood brain barrier in keeping the blood separated from what?
Your Answer:
Correct Answer: Cerebrospinal fluid
Explanation:The blood retinal barrier refers to the membrane that separates the aqueous humour from the blood.
Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 96
Incorrect
-
What is the cell type that offers structural support in the central nervous system?
Your Answer:
Correct Answer: Astrocyte
Explanation:Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 97
Incorrect
-
Which area of the central nervous system is indicated by a positive outcome in the finger-to-nose test?
Your Answer:
Correct Answer: Cerebellum
Explanation:The finger-nose test requires the patient to touch their nose and then the examiner’s finger consecutively. If the patient is unable to perform this task, it indicates motor dysmetria, which is a lack of coordination and may indicate a cerebellar injury.
Cerebellar Dysfunction: Symptoms and Signs
Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).
Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.
Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.
Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 98
Incorrect
-
Which statement accurately describes sporadic CJD?
Your Answer:
Correct Answer: It tends to affect older rather than younger people
Explanation:Variant CJD primarily affects younger individuals, while sporadic CJD is more commonly seen in older individuals.
Creutzfeldt-Jakob Disease: Differences between vCJD and CJD
Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.
vCJD:
– Longer duration from onset of symptoms to death (a year of more)
– Presents with psychiatric and behavioral symptoms before neurological symptoms
– MRI shows pulvinar sign
– EEG shows generalized slowing
– Originates from infected meat products
– Affects younger people (age 25-30)CJD:
– Shorter duration from onset of symptoms to death (a few months)
– Presents with neurological symptoms
– MRI shows bilateral anterior basal ganglia high signal
– EEG shows biphasic and triphasic waves 1-2 per second
– Originates from genetic mutation (bad luck)
– Affects older people (age 55-65)Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 99
Incorrect
-
Which condition is most likely to be associated with diffuse delta and theta waves on an EEG?
Your Answer:
Correct Answer: Metabolic encephalopathy
Explanation:Delta waves are typically observed during stages III and IV of deep sleep and their presence outside of these stages can indicate diffuse slowing and encephalopathy.
Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 100
Incorrect
-
What illness is brought about by prions?
Your Answer:
Correct Answer: Creutzfeldt-Jakob disease
Explanation:Prions are responsible for causing Creutzfeldt-Jakob disease (CJD), a fatal and uncommon condition that leads to progressive neurodegeneration. The disease is characterized by swiftly advancing dementia as one of its primary symptoms.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 101
Incorrect
-
A 65-year-old individual presents with a sudden onset of horizontal diplopia. Upon examination, you note that they have an inability to move their left eye laterally. Which cranial nerve is most likely affected?
Your Answer:
Correct Answer: VI
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 102
Incorrect
-
Which of the following do not describe the features of REM sleep?
Your Answer:
Correct Answer: K complexes on the EEG
Explanation:During REM sleep, the EEG patterns resemble those observed during wakefulness, characterized by numerous beta-rhythms that are fast.
Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 103
Incorrect
-
Which condition is most commonly associated with the presence of eosinophilic cytoplasmic inclusion bodies containing alpha-synuclein?
Your Answer:
Correct Answer: Lewy body dementia
Explanation:Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.
Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.
In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.
Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 104
Incorrect
-
What is a true statement about Anton-Babinski syndrome?
Your Answer:
Correct Answer: Confabulation is a characteristic feature
Explanation:Anton’s syndrome, also known as Anton-Babinski syndrome, is a condition that results from damage to the occipital lobe. People with this syndrome are cortically blind, but they are not aware of it and deny having any problem, a condition known as anosognosia. They may start falling over furniture as they cannot see, but they believe they can still see and describe their surroundings in detail, even though their descriptions are incorrect (confabulation). This syndrome is characterized by a lack of awareness of visual impairment, which can lead to significant difficulties in daily life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 105
Incorrect
-
By which process is dopamine broken down?
Your Answer:
Correct Answer: Monoamine oxidase
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 106
Incorrect
-
Which imaging technique is not considered functional?
Your Answer:
Correct Answer: CT
Explanation:Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 107
Incorrect
-
Which type of ion channel is activated by binding of a specific molecule (ligand)?
Your Answer:
Correct Answer: 5HT-3
Explanation:All serotonin receptors, except for 5-HT3, are coupled with G proteins instead of being ligand gated ion channels.
Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 108
Incorrect
-
In what circumstances are neurofibrillary tangles less commonly observed?
Your Answer:
Correct Answer: Vascular dementia
Explanation:Tauopathies exhibit tangles, but vascular dementia is not classified as one.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 109
Incorrect
-
What are some common symptoms that are typically observed in the initial phases of Alzheimer's disease?
Your Answer:
Correct Answer: Hippocampal atrophy
Explanation:The medial temporal lobe, comprising the hippocampus and parahippocampal gyrus, exhibits the earliest neuropathological alterations.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 110
Incorrect
-
What brain structures are responsible for regulating breathing and heart rate?
Your Answer:
Correct Answer: Medulla
Explanation:The medulla governs the rhythm of the heart and respiration. The amygdala regulates emotional reactions and the ability to perceive the emotions of others. The midbrain is linked to vision, hearing, motor coordination, sleep patterns, alertness, and temperature regulation. The cerebellum manages voluntary movement and balance. The thalamus transmits sensory and motor signals to the cerebral cortex.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 111
Incorrect
-
Which hypothalamic nucleus plays the most significant role in establishing the set point for daily circadian rhythms?
Your Answer:
Correct Answer: Suprachiasmatic
Explanation:Functions of the Hypothalamus
The hypothalamus is a vital part of the brain that plays a crucial role in regulating various bodily functions. It receives and integrates sensory information about the internal environment and directs actions to control internal homeostasis. The hypothalamus contains several nuclei and fiber tracts, each with specific functions.
The suprachiasmatic nucleus (SCN) is responsible for regulating circadian rhythms. Neurons in the SCN have an intrinsic rhythm of discharge activity and receive input from the retina. The SCN is considered the body’s master clock, but it has multiple connections with other hypothalamic nuclei.
Body temperature control is mainly under the control of the preoptic, anterior, and posterior nuclei, which have temperature-sensitive neurons. As the temperature goes above 37ºC, warm-sensitive neurons are activated, triggering parasympathetic activity to promote heat loss. As the temperature goes below 37ºC, cold-sensitive neurons are activated, triggering sympathetic activity to promote conservation of heat.
The hypothalamus also plays a role in regulating prolactin secretion. Dopamine is tonically secreted by dopaminergic neurons that project from the arcuate nucleus of the hypothalamus into the anterior pituitary gland via the tuberoinfundibular pathway. The dopamine that is released acts on lactotrophic cells through D2-receptors, inhibiting prolactin synthesis. In the absence of pregnancy of lactation, prolactin is constitutively inhibited by dopamine. Dopamine antagonists result in hyperprolactinemia, while dopamine agonists inhibit prolactin secretion.
In summary, the hypothalamus is a complex structure that regulates various bodily functions, including circadian rhythms, body temperature, and prolactin secretion. Dysfunction of the hypothalamus can lead to various disorders, such as sleep-rhythm disorder, diabetes insipidus, hyperprolactinemia, and obesity.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 112
Incorrect
-
An older woman presents to the emergency department with sudden onset of left leg dysfunction, urinary incontinence, and abulia. As her time in the department progresses, her left arm also becomes affected. She has a history of vascular disease. Which artery do you suspect is involved?
Your Answer:
Correct Answer: Anterior cerebral artery
Explanation:When there is a blockage in the anterior cerebral artery, the legs are typically impacted more than the arms. Additionally, a common symptom is abulia, which is a lack of determination of difficulty making firm decisions.
Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 113
Incorrect
-
Which structure is not included in the neocortex?
Your Answer:
Correct Answer: Caudate nucleus
Explanation:The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 114
Incorrect
-
What is the relationship between depression and the HPA axis?
Your Answer:
Correct Answer: Major depression is associated with increased levels of corticotropin-releasing factor in the CSF
Explanation:HPA Axis Dysfunction in Mood Disorders
The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.
In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.
Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.
In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.
Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 115
Incorrect
-
What is the typical artery that is blocked in cases of Alexia without agraphia?
Your Answer:
Correct Answer: Posterior cerebral artery
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 116
Incorrect
-
Which statement about multiple sclerosis is incorrect?
Your Answer:
Correct Answer: It is more common in males
Explanation:The statement MS is more common in females is actually correct.
Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 117
Incorrect
-
Which condition is most commonly associated with Klüver-Bucy syndrome?
Your Answer:
Correct Answer: Alzheimer's disease
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 118
Incorrect
-
Which statement about the glossopharyngeal nerve is false?
Your Answer:
Correct Answer: Controls the muscles of mastication
Explanation:The trigeminal nerve is responsible for controlling the muscles involved in chewing, while the glossopharyngeal nerves consist of both motor and sensory fibers that originate from nuclei in the medulla oblongata. The motor fibers of the glossopharyngeal nerves stimulate the pharyngeal muscles and parotid gland secretory cells, while the sensory fibers transmit impulses from the posterior third of the tongue, tonsils, and pharynx to the cerebral cortex.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 119
Incorrect
-
What EEG alteration would be anticipated when a patient who is in a relaxed state with their eyes shut is instructed to open their eyes and read a text passage in front of them?
Your Answer:
Correct Answer: The bilateral disappearance of alpha waves
Explanation:When someone is in a relaxed state with their eyes closed, alpha waves can be detected in the posterior regions of their head. However, these waves will disappear if the person becomes drowsy, concentrates on something, is stimulated, of fixates on a visual object. If the environment is dark, the alpha waves may still be present even with the eyes open.
Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 120
Incorrect
-
What is the most effective method for distinguishing between Alzheimer's disease and Lewy body dementia?
Your Answer:
Correct Answer: Dat scan
Explanation:It’s important to note that DaT-SCAN and SPECT are not the same thing. DaT-SCAN specifically refers to the radioactive isotope called Ioflupane, which is utilized in the creation of a SPECT image.
Alzheimer’s disease can be differentiated from healthy older individuals by using SPECT imaging to detect temporal and parietal hypoperfusion, according to studies such as one conducted by W. Jagust in 2001. Additionally, SPECT imaging has proven to be a useful tool in distinguishing between Alzheimer’s disease and Lewy body dementia, as demonstrated in a study by Vaamonde-Gamo in 2005. The image provided shows a SPECT scan of a patient with Alzheimer’s disease compared to one with Lewy body dementia, with the latter showing lower perfusion in the occipital cortex and the former showing lower perfusion in medial temporal areas.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 121
Incorrect
-
What substance belongs to the category of catecholamines?
Your Answer:
Correct Answer: Dopamine
Explanation:Catecholamines are a group of chemical compounds that have a distinct structure consisting of a benzene ring with two hydroxyl groups, an intermediate ethyl chain, and a terminal amine group. These compounds play an important role in the body and are involved in various physiological processes. The three main catecholamines found in the body are dopamine, adrenaline, and noradrenaline. All of these compounds are derived from the amino acid tyrosine. Overall, catecholamines are essential for maintaining proper bodily functions and are involved in a wide range of physiological processes.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 122
Incorrect
-
Which statement accurately describes neurofibrillary tangles?
Your Answer:
Correct Answer: They are also seen in dementia pugilistica
Explanation:Amyloid protein is the primary component of amyloid plaques, although they are most commonly linked to Alzheimer’s disease.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 123
Incorrect
-
A 45-year-old man presents with contralateral hemisensory loss and reports experiencing intense burning pain in the affected region. What is the probable location of arterial blockage?
Your Answer:
Correct Answer: Thalamogeniculate artery
Explanation:When a stroke affects the thalamus, it can cause loss of sensation on the opposite side of the body and intense burning pain that can be treated with tricyclics. This type of sensory loss is commonly seen in conditions that affect the brain stem, thalamus, of cortex. In addition, a stroke in the thalamogeniculate artery can result in temporary paralysis on the opposite side of the body, followed by ataxia, and involuntary movements. Facial expression may also be affected. Treatment for these patients is similar to that for other stroke patients.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 124
Incorrect
-
What is the definition of sleep latency?
Your Answer:
Correct Answer: The time taken to fall asleep after going to bed
Explanation:Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 125
Incorrect
-
In which type of condition of disease are Hirano bodies commonly observed?
Your Answer:
Correct Answer: Hippocampus
Explanation:Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 126
Incorrect
-
Which receptors are affected by fluoxetine that are believed to be responsible for causing insomnia?
Your Answer:
Correct Answer: 5-HT2
Explanation:Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 127
Incorrect
-
If a man experiences a severe road traffic accident resulting in substantial damage to his frontal lobe, what symptoms would you anticipate him to exhibit?
Your Answer:
Correct Answer: Contralateral hemiplegia
Explanation:Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 128
Incorrect
-
Which statement accurately describes the role of the basal ganglia?
Your Answer:
Correct Answer: Degeneration of the basal ganglia is associated with movement problems
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 129
Incorrect
-
From which gland is melatonin secreted?
Your Answer:
Correct Answer: Pineal
Explanation:The pineal gland secretes melatonin, while the adrenal glands secrete cortisol, aldosterone, adrenaline, and noradrenaline. The release of pituitary hormones is regulated by the hypothalamus, which synthesizes and secretes releasing hormones. Additionally, the parathyroid glands secrete parathyroid hormone (PTH).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 130
Incorrect
-
What is the condition that occurs when there is a loss of dopaminergic cells in the substantia nigra?
Your Answer:
Correct Answer: Parkinson's disease
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 131
Incorrect
-
In the field of neurology, which specific region of the brain did the case of Phineas Gage contribute to our understanding of?
Your Answer:
Correct Answer: Frontal lobe
Explanation:The Case of Phineas Gage and the Importance of the Frontal Lobe
Phineas Gage was a railroad worker who experienced a traumatic accident where an iron pole went through his frontal lobe. Despite surviving the incident, his personality underwent a significant change. This case was crucial in advancing our knowledge of the frontal lobe’s function.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 132
Incorrect
-
Which of the following is categorized as a projection tract in relation to white matter?
Your Answer:
Correct Answer: Geniculocalcarine tract
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 133
Incorrect
-
In which region of the CNS do serotonergic neurons have the highest concentration of cell bodies?
Your Answer:
Correct Answer: Raphe nuclei
Explanation:The raphe nuclei in the brainstem are the primary location of serotonergic neuronal cell bodies in the central nervous system (CNS), which project to the brain and spinal cord. Noradrenaline is synthesised by the locus coeruleus, located in the pons. Dopamine is produced in the substantia nigra and ventral tegmental area in the midbrain. While the majority of serotonin is found in enterochromaffin cells in the gastrointestinal (GI) tract, this is not considered part of the CNS. These neurotransmitters play important roles in various physiological and psychological processes.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 134
Incorrect
-
If a patient suspected of having a stroke presents with a deviation of the tongue towards the right, which nerve is likely to be impacted?
Your Answer:
Correct Answer: Right hypoglossal nerve
Explanation:The hypoglossal nerve (nerve XII) is responsible for controlling the motor functions of the tongue and the muscles surrounding the hyoid bone. As a result, when there is a lesion on the right side, the tongue will tend to deviate towards that side. It is important to note that the hypoglossal nerve is purely a motor nerve and does not have any sensory component.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 135
Incorrect
-
What brain structure is involved in the reward system and receives dopaminergic input from the ventral tegmental area through the mesolimbic dopamine pathway?
Your Answer:
Correct Answer: Nucleus accumbens
Explanation:Brain Anatomy
The brain is a complex organ with various regions responsible for different functions. The major areas of the cerebrum (telencephalon) include the frontal lobe, parietal lobe, occipital lobe, temporal lobe, insula, corpus callosum, fornix, anterior commissure, and striatum. The cerebrum is responsible for complex learning, language acquisition, visual and auditory processing, memory, and emotion processing.
The diencephalon includes the thalamus, hypothalamus and pituitary, pineal gland, and mammillary body. The thalamus is a major relay point and processing center for all sensory impulses (excluding olfaction). The hypothalamus and pituitary are involved in homeostasis and hormone release. The pineal gland secretes melatonin to regulate circadian rhythms. The mammillary body is a relay point involved in memory.
The cerebellum is primarily concerned with movement and has two major hemispheres with an outer cortex made up of gray matter and an inner region of white matter. The cerebellum provides precise timing and appropriate patterns of skeletal muscle contraction for smooth, coordinated movements and agility needed for daily life.
The brainstem includes the substantia nigra, which is involved in controlling and regulating activities of the motor and premotor cortical areas for smooth voluntary movements, eye movement, reward seeking, the pleasurable effects of substance misuse, and learning.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 136
Incorrect
-
Which statement about 5-Hydroxyindoleacetic acid (5-HIAA) is accurate?
Your Answer:
Correct Answer: Low CSF levels are found in people with depression
Explanation:Depression, suicidality, and aggression have been linked to low levels of 5-HIAA in the CSF.
The Significance of 5-HIAA in Depression and Aggression
During the 1980s, there was a brief period of interest in 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Studies found that up to a third of people with depression had low concentrations of 5-HIAA in their cerebrospinal fluid (CSF), while very few normal controls did. This suggests that 5-HIAA may play a role in depression.
Furthermore, individuals with low CSF levels of 5-HIAA have been found to respond less effectively to antidepressants and are more likely to commit suicide. This finding has been replicated in multiple studies, indicating the significance of 5-HIAA in depression.
Low levels of 5-HIAA are also associated with increased levels of aggression. This suggests that 5-HIAA may play a role in regulating aggressive behavior. Overall, the research on 5-HIAA highlights its potential importance in understanding and treating depression and aggression.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 137
Incorrect
-
Through which structure does the mandibular division of the trigeminal nerve exit the cranial cavity?
Your Answer:
Correct Answer: Foramen ovale
Explanation:Cranial Fossae and Foramina
The cranium is divided into three regions known as fossae, each housing different cranial lobes. The anterior cranial fossa contains the frontal lobes and includes the frontal and ethmoid bones, as well as the lesser wing of the sphenoid. The middle cranial fossa contains the temporal lobes and includes the greater wing of the sphenoid, sella turcica, and most of the temporal bones. The posterior cranial fossa contains the occipital lobes, cerebellum, and medulla and includes the occipital bone.
There are several foramina in the skull that allow for the passage of various structures. The most important foramina likely to appear in exams are listed below:
– Foramen spinosum: located in the middle fossa and allows for the passage of the middle meningeal artery.
– Foramen ovale: located in the middle fossa and allows for the passage of the mandibular division of the trigeminal nerve.
– Foramen lacerum: located in the middle fossa and allows for the passage of the small meningeal branches of the ascending pharyngeal artery and emissary veins from the cavernous sinus.
– Foramen magnum: located in the posterior fossa and allows for the passage of the spinal cord.
– Jugular foramen: located in the posterior fossa and allows for the passage of cranial nerves IX, X, and XI.Understanding the location and function of these foramina is essential for medical professionals, as they play a crucial role in the diagnosis and treatment of various neurological conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 138
Incorrect
-
What is a true statement about senile plaques?
Your Answer:
Correct Answer: They consist of beta amyloid
Explanation:Senile plaques are formed by beta amyloid proteins that have folded abnormally and are found in the extracellular space of the grey matter. While they are present in smaller quantities during normal aging, they are insoluble. These plaques are created due to the improper cleavage of Amyloid Precursor Protein (APP), a transmembrane protein whose function is not fully understood.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 139
Incorrect
-
A 40 year old female is admitted to the ward with a diagnosis of depression. On admission the doctor notes skin changes consistent with erythema nodosum and also notes that the patient complains of being short of breath. Unfortunately the lady commits suicide shortly after admission. A post-mortem biopsy reveals Asteroid bodies. Which of the following diagnosis would you most suspect?:
Your Answer:
Correct Answer: Sarcoidosis
Explanation:Pathology Findings in Psychiatry
There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.
Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.
Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.
Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.
Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.
LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.
Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.
Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 140
Incorrect
-
Under normal circumstances, which stage of sleep is responsible for the largest portion of total sleep time?
Your Answer:
Correct Answer: Stage II
Explanation:Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 141
Incorrect
-
What SPECT finding is indicative of Alzheimer's disease?
Your Answer:
Correct Answer: Decreased temporal perfusion
Explanation:Given the medial temporal lobe atrophy commonly observed in Alzheimer’s disease, a reduction in perfusion of the temporal lobe would be anticipated.
Alzheimer’s disease can be differentiated from healthy older individuals by using SPECT imaging to detect temporal and parietal hypoperfusion, according to studies such as one conducted by W. Jagust in 2001. Additionally, SPECT imaging has proven to be a useful tool in distinguishing between Alzheimer’s disease and Lewy body dementia, as demonstrated in a study by Vaamonde-Gamo in 2005. The image provided shows a SPECT scan of a patient with Alzheimer’s disease compared to one with Lewy body dementia, with the latter showing lower perfusion in the occipital cortex and the former showing lower perfusion in medial temporal areas.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 142
Incorrect
-
Age-related plaques are made up of what substances?
Your Answer:
Correct Answer: Beta amyloid
Explanation:Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 143
Incorrect
-
Your consultant calls you into his room to show you an interesting case. When you enter you see a middle-aged female sat in a chair. The consultant places a hairbrush next to her which she immediately picks up and starts brushing her hair with. Which of the following terms best describes this observation?:
Your Answer:
Correct Answer: Utilization behaviour
Explanation:Abnormal Motor Behaviours Associated with Utilization Behaviour
Utilization behaviour (UB) is a condition where patients exhibit exaggerated and inappropriate motor responses to environmental cues and objects. This behaviour is automatic and instrumentally correct, but not contextually appropriate. For instance, a patient may start brushing their teeth when presented with a toothbrush, even in a setting where it is not expected. UB is caused by frontal lobe lesions that result in a loss of inhibitory control.
Other motor abnormalities associated with UB include imitation behaviour, where patients tend to imitate the examiner’s behaviour, and the alien hand sign, where patients experience bizarre hand movements that they cannot control. Manual groping behaviour is also observed, where patients automatically manipulate objects placed in front of them. The grasp reflex, which is normal in infants, should not be present in children and adults. It is an automatic tendency to grip objects of stimuli, such as the examiner’s hand.
Environmental Dependency Syndrome is another condition associated with UB. It describes deficits in personal control of action and an overreliance on social and physical environmental stimuli to guide behaviour in a social context. For example, a patient may start commenting on pictures in an examiner’s office, believing it to be an art gallery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 144
Incorrect
-
Which substance is 5-HIAA a metabolite of?
Your Answer:
Correct Answer: Serotonin
Explanation:The Significance of 5-HIAA in Depression and Aggression
During the 1980s, there was a brief period of interest in 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Studies found that up to a third of people with depression had low concentrations of 5-HIAA in their cerebrospinal fluid (CSF), while very few normal controls did. This suggests that 5-HIAA may play a role in depression.
Furthermore, individuals with low CSF levels of 5-HIAA have been found to respond less effectively to antidepressants and are more likely to commit suicide. This finding has been replicated in multiple studies, indicating the significance of 5-HIAA in depression.
Low levels of 5-HIAA are also associated with increased levels of aggression. This suggests that 5-HIAA may play a role in regulating aggressive behavior. Overall, the research on 5-HIAA highlights its potential importance in understanding and treating depression and aggression.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 145
Incorrect
-
What is the neurotransmitter that prevents the pituitary gland from releasing prolactin?
Your Answer:
Correct Answer: Dopamine
Explanation:Hormones and their functions:
Dopamine, also known as prolactin inhibitory factor, is released from the hypothalamus. Antipsychotics, which are dopamine antagonists, are often linked to increased prolactin levels.
Oxytocin, released from the posterior pituitary, plays a crucial role in sexual reproduction.
Substance P is present throughout the brain and is essential in pain perception.
Vasopressin, a peptide hormone, is released from the posterior pituitary.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 146
Incorrect
-
What neurotransmitter is recognized for its significant role in triggering hunger?
Your Answer:
Correct Answer: Orexin
Explanation:Neurotransmitters and their functions:
Orexin, which is derived from the Greek word for ‘appetite’, is responsible for regulating arousal, wakefulness, and appetite. It is also known as hypocretin and is produced in the hypothalamus. Orexin increases the craving for food.
Glutamate is an excitatory amino acid that plays a crucial role in the nervous system. It is responsible for transmitting signals between nerve cells and is involved in learning and memory.
Prolactin is a neurotransmitter produced by the hypothalamus. It is also known as ‘dopamine inhibitory factor’ and is important in the regulation of sexual function. Prolactin levels increase during pregnancy and breastfeeding.
Serotonin is a monoamine neurotransmitter that has a range of actions, including decreasing appetite. It is involved in regulating mood, sleep, and appetite. Low levels of serotonin have been linked to depression and anxiety.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 147
Incorrect
-
Which receptor's agonist effect is most likely responsible for anorgasmia caused by SSRIs?
Your Answer:
Correct Answer: 5HT2C
Explanation:As an AI language model, I cannot provide a response without knowing the context of the rewrite you are referring to. Please provide more information of context so that I can assist you better.
Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 148
Incorrect
-
In which region of the brain is Broca's area located?
Your Answer:
Correct Answer: Brodmann areas 44 and 45
Explanation:Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 149
Incorrect
-
What is a true statement about GABA?
Your Answer:
Correct Answer: Flumazenil is a GABA-A antagonist
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 150
Incorrect
-
What is the accurate statement about the pathology of Parkinson's disease?
Your Answer:
Correct Answer: Pallor of the locus coeruleus is seen
Explanation:Lewy bodies are not exclusively indicative of a particular disease, as they can also be present in individuals with Alzheimer’s and even in those who do not exhibit any noticeable symptoms.
Parkinson’s Disease Pathology
Parkinson’s disease is a neurodegenerative disorder that affects the central nervous system. The pathology of Parkinson’s disease is very similar to that of Lewy body dementia. The macroscopic features of Parkinson’s disease include pallor of the substantia nigra (midbrain) and locus coeruleus (pons). The microscopic changes include the presence of Lewy bodies, which are intracellular aggregates of alpha-synuclein. Additionally, there is a loss of dopaminergic cells from the substantia nigra pars compacta. These changes contribute to the motor symptoms of Parkinson’s disease, such as tremors, rigidity, and bradykinesia. Understanding the pathology of Parkinson’s disease is crucial for developing effective treatments and improving the quality of life for those affected by this condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 151
Incorrect
-
Which type of injury of damage typically leads to utilization behaviour?
Your Answer:
Correct Answer: Frontal lobe
Explanation:Abnormal Motor Behaviours Associated with Utilization Behaviour
Utilization behaviour (UB) is a condition where patients exhibit exaggerated and inappropriate motor responses to environmental cues and objects. This behaviour is automatic and instrumentally correct, but not contextually appropriate. For instance, a patient may start brushing their teeth when presented with a toothbrush, even in a setting where it is not expected. UB is caused by frontal lobe lesions that result in a loss of inhibitory control.
Other motor abnormalities associated with UB include imitation behaviour, where patients tend to imitate the examiner’s behaviour, and the alien hand sign, where patients experience bizarre hand movements that they cannot control. Manual groping behaviour is also observed, where patients automatically manipulate objects placed in front of them. The grasp reflex, which is normal in infants, should not be present in children and adults. It is an automatic tendency to grip objects of stimuli, such as the examiner’s hand.
Environmental Dependency Syndrome is another condition associated with UB. It describes deficits in personal control of action and an overreliance on social and physical environmental stimuli to guide behaviour in a social context. For example, a patient may start commenting on pictures in an examiner’s office, believing it to be an art gallery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 152
Incorrect
-
Are athetoid movements commonly associated with basal ganglia dysfunction rather than cerebellar dysfunction?
Your Answer:
Correct Answer: Athetoid movements
Explanation:Abnormal movements known as athetoid movements are commonly associated with issues in the basal ganglia.
Cerebellar Dysfunction: Symptoms and Signs
Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).
Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.
Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.
Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 153
Incorrect
-
Where are Lewy bodies commonly located within the basal ganglia in individuals with Parkinson's disease?
Your Answer:
Correct Answer: The pars compacta
Explanation:The midbrain contains a section called the pars compacta, which is made up of neurons that produce dopamine and is situated next to the pars reticulata. Parkinson’s disease is identified by the loss of these dopamine-producing neurons in this area.
Parkinson’s Disease Pathology
Parkinson’s disease is a neurodegenerative disorder that affects the central nervous system. The pathology of Parkinson’s disease is very similar to that of Lewy body dementia. The macroscopic features of Parkinson’s disease include pallor of the substantia nigra (midbrain) and locus coeruleus (pons). The microscopic changes include the presence of Lewy bodies, which are intracellular aggregates of alpha-synuclein. Additionally, there is a loss of dopaminergic cells from the substantia nigra pars compacta. These changes contribute to the motor symptoms of Parkinson’s disease, such as tremors, rigidity, and bradykinesia. Understanding the pathology of Parkinson’s disease is crucial for developing effective treatments and improving the quality of life for those affected by this condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 154
Incorrect
-
Which of the following is not considered a characteristic of Klüver-Bucy syndrome?
Your Answer:
Correct Answer: Visual apraxia
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 155
Incorrect
-
What is the extracellular ion that contributes to the resting membrane potential of a neuron due to its high concentration?
Your Answer:
Correct Answer: Na
Explanation:Understanding Action Potentials in Neurons and Muscle Cells
The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.
To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 156
Incorrect
-
Which lobe of the brain is responsible for causing Gerstmann's syndrome when it malfunctions?
Your Answer:
Correct Answer: Dominant parietal
Explanation:Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 157
Incorrect
-
Which of the following is not a characteristic of non-dominant parietal lesions?
Your Answer:
Correct Answer: Agraphia
Explanation:Non-Dominant Parietal Lobe Dysfunction
The non-dominant parietal lobe is typically the right lobe in most individuals. Dysfunction in this area can lead to various symptoms, including the inability to recognize one’s own illness (anosognosia), neglect of half the body (hemiasomatognosia), difficulty dressing (dressing apraxia), trouble with spatial awareness and construction (constructional dyspraxia), difficulty recognizing familiar places (geographical agnosia), and altered perception of sensory stimuli (allesthesia). It’s important to note that agraphia, a symptom seen in Gerstmann’s syndrome, is caused by dysfunction in the dominant parietal lobe, not the non-dominant lobe.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 158
Incorrect
-
Research has suggested that dysfunction of oligodendrocytes and the myelin sheath may play a role in the development of schizophrenia. Can you provide information on the function of the myelin sheath in the nervous system?
Your Answer:
Correct Answer: Increases the transmission of electrochemical impulses
Explanation:Myelin sheaths are composed of cells containing fat that act as insulation for the axons of neurons. These cells run along the axons with gaps between them called nodes of Ranvier. The fat in the myelin sheath makes it a poor conductor, causing impulses to jump from one gap to the next, which increases the speed of transmission of action potentials.
The white matter of the brain gets its whitish appearance from the myelin sheath, which is made up of glial cells. Oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system are responsible for forming the myelin sheath. The electrical impulse jumps from one node to the next at a rapid rate of up to 120 meters per second, which is known as saltatory conduction.
Glycoproteins play a crucial role in the formation, maintenance, and degradation of myelin sheaths. Recent studies suggest that dysfunction in oligodendrocytes and myelin can lead to changes in synaptic formation and function, resulting in cognitive dysfunction, a core symptom of schizophrenia. Additionally, there is evidence linking oligodendrocyte and myelin dysfunction with abnormalities in dopamine and glutamate, both of which are found in schizophrenia. Addressing these abnormalities could offer therapeutic opportunities for individuals with schizophrenia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 159
Incorrect
-
Which neuroimaging technique measures the amount of oxygenated hemoglobin in the blood?
Your Answer:
Correct Answer: Functional magnetic resonance imaging (fMRI)
Explanation:Functional Imaging Techniques
Functional imaging techniques are used to study brain activity by detecting changes in blood flow and oxygenation levels. One such technique is functional magnetic resonance imaging (fMRI), which measures the concentration of oxygenated haemoglobin in the blood. When neural activity increases in a specific area of the brain, blood flow to that area increases, leading to a higher concentration of haemoglobin.
Magnetic resonance imaging (MRI) is another technique that uses magnetic fields to create images of the brain’s structure. Magnetic resonance spectroscopy (MRS) is a related technique that can detect several odd-numbered nuclei.
To obtain a more accurate anatomical location for functional information, single photon emission computed tomography (SPECT) and positron emission tomography (PET) are used. SPECT and PET both provide information about brain activity by detecting the emission of particles. However, SPECT emits a single particle, while PET emits two particles. These techniques are useful for studying brain function in both healthy individuals and those with neurological disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 160
Incorrect
-
The sella turcica is a saddle-shaped depression in which bone that houses the pituitary gland?
Your Answer:
Correct Answer: Sphenoid
Explanation:The sphenoid bone contains a saddle-shaped depression known as the sella turcica. The anterior cranial fossa is formed by the frontal, ethmoid, and a portion of the sphenoid bones. The middle cranial fossa is formed by the sphenoid and temporal bones, while the posterior cranial fossa is formed by the occipital and temporal bones.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 161
Incorrect
-
What is the neuroanatomical structure that was named after a seahorse due to its alleged resemblance?
Your Answer:
Correct Answer: Hippocampus
Explanation:Brain Structures and Their Etymologies
The hippocampus, with its swirling shape, was named after the seahorse, combining the Greek words ‘hippos’ (horse) and ‘kampos’ (sea-monster). Meanwhile, the cerebellum, which resembles a smaller version of the brain, was named after the Latin word for ‘little brain’. The corpus callosum, a bundle of nerve fibers connecting the two hemispheres of the brain, was named after the Latin for ‘tough body’. The hypothalamus, located below the thalamus, was named after its position. Finally, the putamen, a structure involved in movement control, comes from the Latin word for ‘that which falls off in pruning’. These etymologies provide insight into the history and development of our understanding of the brain’s structures.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 162
Incorrect
-
What is located within Brodmann area 22?
Your Answer:
Correct Answer: Wernicke's area
Explanation:Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 163
Incorrect
-
Through which opening in the skull does the cranial nerve exit, which is known as the internal auditory canal?
Your Answer:
Correct Answer: Vestibulocochlear (VIII)
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 164
Incorrect
-
What is the other structure that, along with the putamen, comprises the lenticular nucleus?
Your Answer:
Correct Answer: Globus pallidus
Explanation:The Edinger-Westphal nucleus is the motor nucleus of the third cranial nerve, while the putamen and globus pallidus comprise the lenticular nucleus, which is part of the basal ganglia. The basal ganglia play a role in motor control and use the inhibitory neurotransmitter GABA. The components of the basal ganglia can be classified in various ways, with the corpus striatum (caudate nucleus, putamen, nucleus accumbens, and globus pallidus) and the striatum of neostriatum (caudate, putamen, and globus pallidus) being common groupings.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 165
Incorrect
-
What is a true statement about cerebrovascular accidents?
Your Answer:
Correct Answer: Cerebral infarction commonly occurs during sleep
Explanation:During sleep, strokes are more likely to occur as blood pressure decreases and areas of the brain with poor blood flow (caused by arterial damage in arteriopaths) become oxygen-deprived. Women with pre-existing cardiovascular disease should avoid taking oral contraceptives as they can raise the risk of stroke and DVTs.
Cerebrovascular accidents (CVA), also known as strokes, are defined by the World Health Organization as a sudden onset of focal neurological symptoms lasting more than 24 hours and presumed to be of vascular origin. Strokes can be caused by either infarction of hemorrhage, with infarction being more common. Hemorrhagic strokes tend to be more severe. Intracranial hemorrhage can be primary, caused mainly by hypertension, of subarachnoid, caused by the rupture of an aneurysm of angioma. Primary intracranial hemorrhage is most common in individuals aged 60-80 and often occurs during exertion. Infarction can be caused by thrombosis of embolism, with thrombosis being more common. Atherosclerosis, often caused by hypertension, is the main cause of infarction. CT scanning is the preferred diagnostic tool during the first 48 hours after a stroke as it can distinguish between infarcts and hemorrhages. Recovery from embolism is generally quicker and more complete than from thrombosis due to the availability of collateral channels.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 166
Incorrect
-
Which brain structure is located next to Broca's and Wernicke's areas?
Your Answer:
Correct Answer: Sylvian sulcus
Explanation:Understanding the sylvian (lateral) sulcus is crucial in comprehending the perisylvian language area and distinguishing between perisylvian and extrasylvian types of aphasias.
Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 167
Incorrect
-
What hormone is secreted by the posterior pituitary gland?
Your Answer:
Correct Answer: Antidiuretic hormone
Explanation:The hormone ADH (also known as vasopressin) is released from the posterior pituitary gland and promotes water retention and increased blood pressure by constricting arterioles. Conversely, the hormones ACTH, growth hormone, luteinizing hormone, and thyroid stimulating hormone are all released from the anterior pituitary gland and have various effects on the body, such as stimulating hormone production in the adrenal glands, promoting bone and muscle growth, regulating sex gland function, and stimulating the release of thyroxine.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 168
Incorrect
-
Which cranial nerve travels through the cribriform plate of the ethmoid bone on its way to the brain?
Your Answer:
Correct Answer: Olfactory nerve
Explanation:The olfactory nerves are responsible for the sense of smell. They originate in the upper part of the nose’s mucous membrane and travel through the ethmoid bone’s cribriform plate. From there, they reach the olfactory bulb, where nerve cells synapse and transmit the impulse to a second neuron. Finally, the nerves travel to the temporal lobe of the cerebrum, where the perception of smell occurs.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 169
Incorrect
-
Which structure is thought to play a major role in processing rewards?
Your Answer:
Correct Answer: Nucleus accumbens
Explanation:Drug addiction is closely linked to reward processing, which is primarily regulated by the nucleus accumbens and the ventral tegmental area (VTA).
The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 170
Incorrect
-
Which pathway's dopamine blockade is responsible for the antipsychotic-induced extrapyramidal side effects?
Your Answer:
Correct Answer: Nigrostriatal
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 171
Incorrect
-
In a healthy right-handed man, which structure is typically larger in the left hemisphere compared to the right hemisphere?
Your Answer:
Correct Answer: Planum temporale
Explanation:Cerebral Asymmetry in Planum Temporale and its Implications in Language and Auditory Processing
The planum temporale, a triangular region in the posterior superior temporal gyrus, is a highly lateralized brain structure involved in language and music processing. Studies have shown that the planum temporale is up to ten times larger in the left cerebral hemisphere than the right, with this asymmetry being more prominent in men. This asymmetry can be observed in gestation and is present in up to 70% of right-handed individuals.
Recent research suggests that the planum temporale also plays an important role in auditory processing, specifically in representing the location of sounds in space. However, reduced planum temporale asymmetry has been observed in individuals with dyslexia, stuttering, and schizophrenia. These findings highlight the importance of cerebral asymmetry in the planum temporale and its implications in language and auditory processing.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 172
Incorrect
-
What is the accurate statement about night terrors in children?
Your Answer:
Correct Answer: Violent behaviour has been reported
Explanation:Night terrors typically occur during deep sleep in stage 4. Upon waking, there is no memory of the experience. These episodes can be considered a dissociative state and may involve automatic behaviors. In some cases, violent behavior may occur during night terrors, but the individual cannot be held accountable for their actions. Family history is not a common factor in the occurrence of night terrors.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 173
Incorrect
-
Which condition has been eliminated due to the use of highly active antiretroviral therapy (HAART) in individuals who are HIV positive?
Your Answer:
Correct Answer: Toxoplasmosis
Explanation:The use of HAART has led to a complete elimination of new cases of toxoplasmosis in individuals who are HIV positive. Studies conducted on the Edinburgh cohort have revealed a significant decrease in the occurrence of CMV by 50% during autopsy, a 68% reduction in HIVE, and complete eradication of toxoplasmosis. However, there has been a slight increase in the incidence of PML and lymphoma in this group and other samples.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 174
Incorrect
-
Which of the following conditions is characterized by an increase in the size of the ventricles on structural neuroimaging over time?
Your Answer:
Correct Answer: Alzheimer's dementia
Explanation:Neuroimaging studies have shown that Alzheimer’s dementia is linked to a gradual increase in ventricular size, while schizophrenia is associated with non-progressive enlargement of the lateral and third ventricles. Although some studies have reported increased ventricular size in individuals with affective disorders, the findings are not consistent. Additionally, individuals with antisocial personality disorder may have reduced prefrontal gray matter volume.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 175
Incorrect
-
Through which opening in the skull does the cranial nerve exit that is known as the superior orbital fissure?
Your Answer:
Correct Answer: Abducens (VI)
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 176
Incorrect
-
Which of the following is enlarged in individuals with schizophrenia?
Your Answer:
Correct Answer: The ventricles
Explanation:Ventricular enlargement is a common finding in individuals with schizophrenia.
Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 177
Incorrect
-
You are asked to assess a 75 year old woman on a geriatric ward who presents with sudden dizziness and vomiting. During your examination, you notice that the right side of her face seems to have lost sensation, and her left arm and leg also appear to have lost sensation to pain and temperature. What is your suspected diagnosis?
Your Answer:
Correct Answer: Posterior inferior cerebellar artery occlusion
Explanation:Posterior inferior cerebellar artery occlusion/infarct, also known as Wallenberg’s syndrome of lateral medullary syndrome, can cause a sudden onset of dizziness and vomiting. It can also result in ipsilateral facial sensory loss, specifically for pain and temperature, and contralateral sensory loss for pain and temperature of the limbs and trunk. Nystagmus to the side of the lesion, ipsilateral limb ataxia, dysphagia, and dysarthria are also common symptoms. Additionally, this condition can cause ipsilateral pharyngeal and laryngeal paralysis.
Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 178
Incorrect
-
What is the breakdown product of serotonin?
Your Answer:
Correct Answer: 5-Hydroxyindoleacetic acid
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 179
Incorrect
-
Which condition is most likely to exhibit a hyperkinetic gait?
Your Answer:
Correct Answer: Sydenham chorea
Explanation:Gait disorders can be caused by a variety of conditions, including neurological, muscular, and structural abnormalities. One common gait disorder is hemiplegic gait, which is characterized by unilateral weakness on the affected side, with the arm flexed, adducted, and internally rotated, and the leg on the same side in extension with plantar flexion of the foot and toes. When walking, the patient may hold their arm to one side and drag their affected leg in a semicircle (circumduction) due to weakness of leg flexors and extended foot. Hemiplegic gait is often seen in patients who have suffered a stroke.
Other gait disorders include ataxic gait, spastic gait, and steppage gait, each with their own unique characteristics and associated conditions. Accurate diagnosis and treatment of gait disorders is important for improving mobility and quality of life for affected individuals.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 180
Incorrect
-
What EEG alterations are observed in individuals with Creutzfeldt-Jakob disease?
Your Answer:
Correct Answer: Periodic sharp wave complexes
Explanation:The typical EEG pattern for CJD includes periodic sharp wave complexes, which is a diagnostic criterion. Lewy body dementia may show generalized slow wave activity, but if it is more prominent in the temporal and parietal regions, it may indicate Alzheimer’s disease. Toxic encephalopathies, such as lithium toxicity, may show periodic triphasic waves on EEG. For more information, see Smith SJ’s article EEG in neurological conditions other than epilepsy: when does it help, what does it add? (2005).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 181
Incorrect
-
What is a true statement about the cerebral cortex?
Your Answer:
Correct Answer: The neocortex contains pyramidal cells
Explanation:The cortex is composed of neurons, with the majority being pyramidal neurons that are excitatory and contain glutamate. Grey matter is where neural cell bodies are located, while white matter mainly consists of myelinated axon tracts. The color contrast between the two is due to the white appearance of myelin.
The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 182
Incorrect
-
If a certain nerve is damaged, which reflex may not occur during the jaw jerk test?
Your Answer:
Correct Answer: Trigeminal
Explanation:Cranial Nerve Reflexes
When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:
– Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
– Jaw jerk: involves the trigeminal nerve (sensory and motor).
– Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
– Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 183
Incorrect
-
A child comes to the clinic, they say hello and take a seat. You ask them how their day was to which they answer 'good'. They are then asked to name their favorite animal to which they answer dog. They are then asked what sound a cat makes and they answer woof. They are then asked what color the sky is and they answer green. What sign do they exhibit?
Your Answer:
Correct Answer: Perseveration
Explanation:Perseveration: The Clinical Symptoms in Chronic Schizophrenia and Organic Dementia
Perseveration is a common behavior observed in patients with organic brain involvement. It is characterized by the conscious continuation of an act of an idea. This behavior is frequently seen in patients with delirium, epilepsy, dementia, schizophrenia, and normal individuals under extreme fatigue of drug-induced states.
In chronic schizophrenia and organic dementia, perseveration is a prominent symptom. Patients with these conditions tend to repeat the same words, phrases, of actions over and over again, even when it is no longer appropriate of relevant to the situation. This behavior can be frustrating for caregivers and family members, and it can also interfere with the patient’s ability to communicate effectively.
In schizophrenia, perseveration is often associated with disorganized thinking and speech. Patients may jump from one topic to another without any logical connection, and they may repeat the same words of phrases in an attempt to express their thoughts. In organic dementia, perseveration is a sign of cognitive decline and memory impairment. Patients may repeat the same stories of questions, forgetting that they have already asked of answered them.
Overall, perseveration is a common symptom in patients with organic brain involvement, and it can have a significant impact on their daily functioning and quality of life. Understanding this behavior is essential for effective management and treatment of these conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 184
Incorrect
-
A 65-year-old woman is experiencing memory difficulties and has been diagnosed with Alzheimer's disease. Which anatomical structure is most likely to exhibit atrophy in this scenario?
Your Answer:
Correct Answer: Hippocampus
Explanation:The frontal lobe is located at the front of the cerebrum and is responsible for managing executive functions and working memory. The hippocampus plays a role in spatial navigation and the consolidation of short term memory to long term memory, but is often the first region of the brain to suffer damage in Alzheimer’s disease. The corpus callosum is a bundle of nerve fibers that connects the left and right cerebral hemispheres, facilitating communication between them. The thalamus is a symmetrical midline structure that relays sensory and motor signals to the cerebral cortex, while also regulating consciousness, alertness, and sleep. Broca’s area, which is typically located in the inferior frontal gyrus, is a key region involved in language production.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 185
Incorrect
-
Which substance has the highest level of permeability through the blood brain barrier?
Your Answer:
Correct Answer: Lipid soluble molecules
Explanation:Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 186
Incorrect
-
What substance precedes the production of serotonin?
Your Answer:
Correct Answer: 5-hydroxytryptophan
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 187
Incorrect
-
A young girl who has had herpes encephalitis develops a severe carbohydrate craving and weight gain. What would be your suspicion?
Your Answer:
Correct Answer: Klüver-Bucy syndrome
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 188
Incorrect
-
An individual's EEG shows widespread flattening with the existence of theta (θ) and delta (δ) waves of low amplitude. What is the most probable diagnosis based on this information?
Your Answer:
Correct Answer: Huntington's disease
Explanation:The EEG findings for Huntington’s disease typically show a widespread decrease in activity with low amplitude theta (θ) and delta (δ) waves. In contrast, CJD is characterized by bilateral, synchronous generalised irregular spike wave complexes occurring at a rate of 1-2/second, often accompanied by myoclonic jerks. Hepatic encephalopathy is associated with widespread slowing and triphasic waves, while herpes simplex encephalitis is linked to repetitive episodic discharges and temporal lobe focal slow waves. HIV typically demonstrates diffuse slowing on EEG.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 189
Incorrect
-
What statement accurately describes ionotropic receptors?
Your Answer:
Correct Answer: GABA-A is an example of an ionotropic receptor
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 190
Incorrect
-
Which structure's degeneration is believed to cause the absence of cholinergic innervation observed in Alzheimer's disease?
Your Answer:
Correct Answer: Nucleus of Meynert
Explanation:The primary origin of acetylcholine in the brain is the Meynert nucleus, which is observed to be atrophied in individuals with Alzheimer’s disease. This clarifies the deficiency of acetylcholine in this disorder and the effectiveness of cholinesterase inhibitors.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 191
Incorrect
-
Which of the following cannot trigger abnormal wave patterns on the EEG?
Your Answer:
Correct Answer: Cold environments
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 192
Incorrect
-
Which symptom would indicate a hydrocephalus that is communicating rather than non-communicating?
Your Answer:
Correct Answer: Ataxia
Explanation:Normal Pressure Hydrocephalus
Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.
The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 193
Incorrect
-
A 56-year-old woman experiences a stroke caused by a ruptured berry aneurysm in the right middle cerebral artery. She frequently collides with objects but denies any visual impairment.
What is the probable diagnosis?Your Answer:
Correct Answer: Anton syndrome
Explanation:Anton-Babinski syndrome, also known as Anton syndrome of Anton’s blindness, is a rare condition caused by brain damage in the occipital lobe. Individuals with this syndrome are unable to see due to cortical blindness, but they insist that they can see despite evidence to the contrary. This is because they confabulate, of make up explanations for their inability to see. The syndrome is typically a result of a stroke, but can also occur after a head injury.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 194
Incorrect
-
In what area of the brain does the Anton-Babinski syndrome cause damage?
Your Answer:
Correct Answer: Occipital lobe
Explanation:Anton’s syndrome, also known as Anton-Babinski syndrome, is a condition that results from damage to the occipital lobe. People with this syndrome are cortically blind, but they are not aware of it and deny having any problem, a condition known as anosognosia. They may start falling over furniture as they cannot see, but they believe they can still see and describe their surroundings in detail, even though their descriptions are incorrect (confabulation). This syndrome is characterized by a lack of awareness of visual impairment, which can lead to significant difficulties in daily life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 195
Incorrect
-
What evidence indicates a diagnosis of dementia pugilistica?
Your Answer:
Correct Answer: A history of recurrent head injury
Explanation:Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 196
Incorrect
-
What is a true statement about the cingulate gyrus?
Your Answer:
Correct Answer: It is involved in reward-based decision making
Explanation:The fusiform gyrus is essential for recognizing faces and bodies, while damage to the angular gyrus can result in Gerstmann syndrome.
The Cingulate Gyrus: A Hub for Emotions and Decision Making
The cingulate gyrus is a cortical fold located on the medial aspect of the cerebral hemisphere, adjacent to the corpus callosum. As part of the limbic system, it plays a crucial role in processing emotions and regulating the body’s endocrine and autonomic responses to emotional stimuli. Additionally, it is involved in reward-based decision making. Essentially, the cingulate gyrus acts as a hub that connects emotions, sensations, and actions. The term cingulate comes from the Latin word for belt of girdle, which reflects the way in which it wraps around the corpus callosum.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 197
Incorrect
-
Which statement about acetylcholine is incorrect?
Your Answer:
Correct Answer: Nicotinic receptors are also stimulated by muscarine
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 198
Incorrect
-
Which of the following is an amino acid neurotransmitter?
Your Answer:
Correct Answer: Gamma-aminobutyric acid (GABA)
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 199
Incorrect
-
What hormone is produced by the posterior pituitary gland?
Your Answer:
Correct Answer: Antidiuretic hormone (ADH)
Explanation:The posterior pituitary secretes antidiuretic hormone (ADH) and oxytocin, while the anterior pituitary secretes human growth hormone (HGH), adrenocorticotropic hormone (ACTH), prolactin (PRL), thyroid-stimulating hormone (TSH), luteinising hormone (LH), and follicle-stimulating hormone (FSH).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 200
Incorrect
-
Patients who attempt suicide often have decreased levels of which substance in their CSF?
Your Answer:
Correct Answer: 5-HIAA
Explanation:Depression, suicidality, and aggression have been linked to decreased levels of 5-HIAA in the CSF.
The Significance of 5-HIAA in Depression and Aggression
During the 1980s, there was a brief period of interest in 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Studies found that up to a third of people with depression had low concentrations of 5-HIAA in their cerebrospinal fluid (CSF), while very few normal controls did. This suggests that 5-HIAA may play a role in depression.
Furthermore, individuals with low CSF levels of 5-HIAA have been found to respond less effectively to antidepressants and are more likely to commit suicide. This finding has been replicated in multiple studies, indicating the significance of 5-HIAA in depression.
Low levels of 5-HIAA are also associated with increased levels of aggression. This suggests that 5-HIAA may play a role in regulating aggressive behavior. Overall, the research on 5-HIAA highlights its potential importance in understanding and treating depression and aggression.
-
This question is part of the following fields:
- Neurosciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)