00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 32-year-old woman visits her doctor complaining of a severe, pulsating headache that...

    Incorrect

    • A 32-year-old woman visits her doctor complaining of a severe, pulsating headache that began last night and is concentrated at the back of her head. She experiences intense pain when coughing. Her family has a history of Type I Chiari malformation.

      The doctor suspects idiopathic intracranial hypertension and conducts a fundoscopy to check for signs of papilloedema. Before using an ophthalmoscope to examine her eyes, the doctor applies a topical medication.

      What is the name of the medication used?

      Your Answer: Topical lidocaine

      Correct Answer: Tropicamide

      Explanation:

      Tropicamide is administered before fundoscopy to enlarge the pupils. It functions as a muscarinic receptor antagonist, inhibiting parasympathetic impulses and causing the pupil constrictor response and ciliary muscle to become paralyzed. This results in pupil dilation, which is necessary for optimal visualization of the fundus.

      Fluorescein stain is utilized to evaluate the cornea for damage or the presence of foreign objects in the eye.

      Pilocarpine, a muscarinic receptor agonist, causes pupillary constriction and should not be used before fundoscopy as it would hinder the visualization of the fundus.

      Lidocaine is a local anesthetic that works by blocking fast voltage-gated Na channels in the neuronal cell membrane responsible for signal propagation. There is no need to apply topical lidocaine before fundoscopy.

      Mydriasis, which is the enlargement of the pupil, can be caused by various factors such as third nerve palsy, Holmes-Adie pupil, traumatic iridoplegia, phaeochromocytoma, and congenital conditions. Additionally, certain drugs like topical mydriatics such as tropicamide and atropine, sympathomimetic drugs like amphetamines and cocaine, and anticholinergic drugs like tricyclic antidepressants can also cause mydriasis. It is important to note that anisocoria, which is the unequal size of pupils, can also lead to apparent mydriasis when compared to the other pupil.

    • This question is part of the following fields:

      • Neurological System
      20
      Seconds
  • Question 2 - A 49-year-old patient visits your clinic with complaints of unintentional weight loss, increased...

    Correct

    • A 49-year-old patient visits your clinic with complaints of unintentional weight loss, increased appetite, and diarrhea. She frequently experiences a rapid heartbeat and feels hot and sweaty in your office. During examination, you observe lid retraction in her eyes and a pulse rate of 110 beats per minute. You suspect thyrotoxicosis and plan to measure her serum levels of thyroid stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). Since TSH is secreted by the anterior pituitary, which other hormone is also released by this gland?

      Your Answer: Prolactin

      Explanation:

      The hormone secreted by the anterior pituitary gland that stimulates breast development in puberty and during pregnancy, as well as milk production after delivery, is prolactin. Along with prolactin, the anterior pituitary gland also secretes growth hormone, adrenocorticotropic hormone (ACTH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and melanocyte releasing hormone.

      antidiuretic hormone (ADH), also known as vasopressin, is secreted by the posterior pituitary gland. It increases water reabsorption in the collecting ducts of the kidneys.

      Aldosterone is released by the zona glomerulosa of the adrenal cortex. It is a mineralocorticoid that increases sodium reabsorption in the distal nephron of the kidney, leading to water retention.

      Cortisol is released by the zona fasiculata of the adrenal gland. It is a glucocorticoid that has various actions, including increasing protein catabolism, glycogenolysis, and gluconeogenesis.

      The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.

    • This question is part of the following fields:

      • Neurological System
      32.6
      Seconds
  • Question 3 - A 72-year-old woman is brought to the general practice by her son. The...

    Correct

    • A 72-year-old woman is brought to the general practice by her son. The son reports that his mother has been experiencing increasing forgetfulness and appears less alert. She has also been having repeated incidents of urinary incontinence and walks with a shuffling gait. A CT head scan is ordered, which reveals bilateral dilation of the lateral ventricles without any blockage of the interventricular foramina. What is the space that the interventricular foramen allows cerebrospinal fluid to flow from each lateral ventricle into?

      Your Answer: Third ventricle

      Explanation:

      The third ventricle is the correct answer as it is a part of the CSF system and is located in the midline between the thalami of the two hemispheres. It connects to the lateral ventricles via the interventricular foramina and to the fourth ventricle via the cerebral aqueduct (of Sylvius).

      CSF flows from the third ventricle to the fourth ventricle through the cerebral aqueduct (of Sylvius) and exits the fourth ventricle through one of four openings. These include the median aperture (foramen of Magendie), either of the two lateral apertures (foramina of Luschka), and the central canal at the obex.

      The lateral ventricles do not communicate directly with each other and drain into the third ventricle via individual interventricular foramina.

      The patient in the question is likely suffering from normal pressure hydrocephalus, which is characterized by gait abnormality, urinary incontinence, and dementia. This condition is caused by alterations in the flow and absorption of CSF, leading to ventricular dilation without raised intracranial pressure. Lumbar puncture typically shows normal CSF pressure.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      24.9
      Seconds
  • Question 4 - Which muscle does not attach to the medial side of the greater trochanter?...

    Correct

    • Which muscle does not attach to the medial side of the greater trochanter?

      Your Answer: Quadratus femoris

      Explanation:

      The mnemonic for muscle attachment on the greater trochanter is POGO, which stands for Piriformis, Obturator internus, and Gemelli.

      The gluteal region is composed of various muscles and nerves that play a crucial role in hip movement and stability. The gluteal muscles, including the gluteus maximus, medius, and minimis, extend and abduct the hip joint. Meanwhile, the deep lateral hip rotators, such as the piriformis, gemelli, obturator internus, and quadratus femoris, rotate the hip joint externally.

      The nerves that innervate the gluteal muscles are the superior and inferior gluteal nerves. The superior gluteal nerve controls the gluteus medius, gluteus minimis, and tensor fascia lata muscles, while the inferior gluteal nerve controls the gluteus maximus muscle.

      If the superior gluteal nerve is damaged, it can result in a Trendelenburg gait, where the patient is unable to abduct the thigh at the hip joint. This weakness causes the pelvis to tilt down on the opposite side during the stance phase, leading to compensatory movements such as trunk lurching to maintain a level pelvis throughout the gait cycle. As a result, the pelvis sags on the opposite side of the lesioned superior gluteal nerve.

    • This question is part of the following fields:

      • Neurological System
      6.5
      Seconds
  • Question 5 - A 20-year-old man is assaulted outside a nightclub and struck with a baseball...

    Incorrect

    • A 20-year-old man is assaulted outside a nightclub and struck with a baseball bat, resulting in a blow to the right side of his head. He is taken to the emergency department and placed under observation. As his Glasgow Coma Scale score declines, he falls into a coma. What is the most probable haemodynamic parameter that will be present?

      Your Answer: Hypertension and tachycardia

      Correct Answer: Hypertension and bradycardia

      Explanation:

      Before coning, hypertension and bradycardia are observed. The brain regulates its own blood supply by managing the overall blood pressure.

      Patients with head injuries should be managed according to ATLS principles and extracranial injuries should be managed alongside cranial trauma. Different types of traumatic brain injury include extradural hematoma, subdural hematoma, and subarachnoid hemorrhage. Primary brain injury may be focal or diffuse, while secondary brain injury occurs when cerebral edema, ischemia, infection, tonsillar or tentorial herniation exacerbates the original injury. Management may include IV mannitol/furosemide, decompressive craniotomy, and ICP monitoring. Pupillary findings can provide information on the location and severity of the injury.

    • This question is part of the following fields:

      • Neurological System
      17.8
      Seconds
  • Question 6 - During a routine physical exam, a patient in their mid-40s was found to...

    Correct

    • During a routine physical exam, a patient in their mid-40s was found to have one eye drifting towards the midline when instructed to look straight. Subsequent MRI scans revealed a tumor pressing on one of the skull's foramina. Which foramen of the skull is likely affected by the tumor?

      Your Answer: Superior orbital fissure

      Explanation:

      The correct answer is that the abducens nerve passes through the superior orbital fissure. This is supported by the patient’s symptoms, which suggest damage to the abducens nerve that innervates the lateral rectus muscle responsible for abducting the eye. The other options are incorrect as they do not innervate the eye or are located in anatomically less appropriate positions. It is important to understand the functions of the nerves and their corresponding foramina to correctly answer this question.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      23.3
      Seconds
  • Question 7 - A 25-year-old male is at the doctor's office with his girlfriend, reporting that...

    Correct

    • A 25-year-old male is at the doctor's office with his girlfriend, reporting that she sleepwalks at night. During which stage of the sleep cycle is this most likely to happen?

      Your Answer: Non-REM stage 3 (N3)

      Explanation:

      Understanding Sleep Stages: The Sleep Doctor’s Brain

      Sleep is a complex process that involves different stages, each with its own unique characteristics. The Sleep Doctor’s Brain provides a simplified explanation of the four main sleep stages: N1, N2, N3, and REM.

      N1 is the lightest stage of sleep, characterized by theta waves and often associated with hypnic jerks. N2 is a deeper stage of sleep, marked by sleep spindles and K-complexes. This stage represents around 50% of total sleep. N3 is the deepest stage of sleep, characterized by delta waves. Parasomnias such as night terrors, nocturnal enuresis, and sleepwalking can occur during this stage.

      REM, or rapid eye movement, is the stage where dreaming occurs. It is characterized by beta-waves and a loss of muscle tone, including erections. The sleep cycle typically follows a pattern of N1 โ†’ N2 โ†’ N3 โ†’ REM, with each stage lasting for different durations throughout the night.

      Understanding the different sleep stages is important for maintaining healthy sleep habits and identifying potential sleep disorders. By monitoring brain activity during sleep, the Sleep Doctor’s Brain can provide valuable insights into the complex process of sleep.

    • This question is part of the following fields:

      • Neurological System
      16.5
      Seconds
  • Question 8 - An 80-year-old woman arrives at the emergency department complaining of a severe headache...

    Correct

    • An 80-year-old woman arrives at the emergency department complaining of a severe headache that has persisted for 12 hours. She describes the onset of the headache as sudden and the most intense she has ever experienced. The pain is primarily located at the back of her head, and she denies any history of trauma. Upon examination, she shows no neurological deficits or other symptoms.

      The patient has a history of hypertension, which is being managed with amlodipine, but is otherwise healthy. This is the first time she has experienced a headache of this nature.

      What is the probable underlying diagnosis?

      Your Answer: Subarachnoid haemorrhage

      Explanation:

      The sudden onset of an occipital headache in a 78-year-old patient is a cause for concern, as it may indicate a subarachnoid haemorrhage. This condition occurs when there is bleeding in the space between the arachnoid mater and the pia mater, often due to a ruptured berry aneurysm. Patients typically describe a sudden, severe headache, and risk factors include hypertension, smoking, and autosomal dominant polycystic kidney disease. Urgent investigation with a CT scan is necessary, and treatment may involve medical management and surgical intervention. Acute ischaemic stroke, extradural haemorrhage, and occipital migraine are less likely diagnoses in this scenario.

      There are different types of traumatic brain injury, including focal (contusion/haematoma) or diffuse (diffuse axonal injury). Diffuse axonal injury occurs due to mechanical shearing following deceleration, causing disruption and tearing of axons. Intracranial haematomas can be extradural, subdural or intracerebral, while contusions may occur adjacent to (coup) or contralateral (contre-coup) to the side of impact. Secondary brain injury occurs when cerebral oedema, ischaemia, infection, tonsillar or tentorial herniation exacerbates the original injury.

    • This question is part of the following fields:

      • Neurological System
      16.6
      Seconds
  • Question 9 - Are the muscles of the thenar eminence supplied by the median nerve and...

    Incorrect

    • Are the muscles of the thenar eminence supplied by the median nerve and is atrophy of these muscles a characteristic of carpal tunnel syndrome?

      Your Answer: It innervates the palmar interossei

      Correct Answer: Supplies the muscles of the thenar eminence

      Explanation:

      The median nerve supplies the muscles of the thenar eminence, and carpal tunnel syndrome is characterized by the atrophy of these muscles.

      The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.

      The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.

      Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.

    • This question is part of the following fields:

      • Neurological System
      21
      Seconds
  • Question 10 - Which muscle is innervated by the cervical branch of the facial nerve? ...

    Correct

    • Which muscle is innervated by the cervical branch of the facial nerve?

      Your Answer: Platysma

      Explanation:

      Platysma is innervated by the cervical branch of the facial nerve.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      11
      Seconds
  • Question 11 - You are reviewing a child's notes in the clinic and see that they...

    Correct

    • You are reviewing a child's notes in the clinic and see that they have recently been seen by an ophthalmologist. Their ocular examination was normal, although they were noted to have significant hyperopia (farsightedness) and would benefit from spectacles. The child's parent mentioned that they do not fully understand why their child requires glasses. You draw them a diagram to explain the cause of their long-sightedness.

      Where is the point that light rays converge in this child?

      Your Answer: Behind the retina

      Explanation:

      Hyperopia, also known as hypermetropia, is a condition where the eye’s visual axis is too short, causing the image to be focused behind the retina. This is typically caused by an imbalance between the length of the eye and the power of the cornea and lens system.

      In a healthy eye, light is first focused by the cornea and then by the crystalline lens, resulting in a clear image on the retina. However, in hyperopia, the light is refracted to a point of focus behind the retina, leading to blurred vision.

      Myopia, on the other hand, is a common refractive error where light rays converge in front of the retina due to the cornea and lens system being too powerful for the length of the eye.

      In cases where light rays converge on the crystalline lens capsule, it may indicate severe corneal disruption, such as ocular trauma or keratoconus. This would not be considered a refractive error.

      To correct hyperopia, corrective lenses are needed to refract the light before it enters the eye. A convex lens is typically used to correct the refractive error in a hyperopic eye.

      A gradual decline in vision is a prevalent issue among the elderly population, leading them to seek guidance from healthcare providers. This condition can be attributed to various causes, including cataracts and age-related macular degeneration. Both of these conditions can cause a gradual loss of vision over time, making it difficult for individuals to perform daily activities such as reading, driving, and recognizing faces. As a result, it is essential for individuals experiencing a decline in vision to seek medical attention promptly to receive appropriate treatment and prevent further deterioration.

    • This question is part of the following fields:

      • Neurological System
      19.1
      Seconds
  • Question 12 - A 30-year-old man is brought to the clinic by his wife who complains...

    Correct

    • A 30-year-old man is brought to the clinic by his wife who complains that her husband engages in public masturbation and manipulates his genitals. He frequently licks objects and attempts to put them in his mouth. The wife also reports a recent significant increase in his appetite followed by purging. She is distressed that her husband seems emotionally unaffected. These symptoms began after he suffered a severe head injury 6 months ago and was found to have bilateral medial temporal lobe damage on imaging. On examination, the patient is unable to recognize familiar objects placed in front of him. Which part of the brain is most likely to have a lesion in this patient?

      Your Answer: Amygdala

      Explanation:

      Kluver-Bucy syndrome can be caused by lesions in the amygdala, which is a part of the limbic system located in the medial portion of the temporal lobes on both sides of the brain. This condition may present with symptoms such as hypersexuality, hyperorality, hyperphagia, bulimia, placid response to emotions, and visual agnosia/psychic blindness. The lesions that cause Kluver-Bucy syndrome can be a result of various factors such as infection, trauma, stroke, or organic brain disease.

      The cerebellum is an incorrect answer because cerebellar lesions primarily affect gait and cause truncal ataxia, along with other symptoms such as intention tremors and nystagmus.

      Frontal lobe lesions can lead to Broca’s aphasia, which affects the fluency of speech, but comprehension of language remains intact.

      The occipital lobe is also an incorrect answer because lesions in this area are commonly associated with homonymous hemianopia, a condition where only one side of the visual field remains visible. While visual agnosia can occur with an occipital lobe lesion, it does not account for the other symptoms seen in Kluver-Bucy syndrome such as hypersexuality and hyperorality.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      9
      Seconds
  • Question 13 - A 70-year-old man experiences a fall resulting in a fractured neck of femur....

    Correct

    • A 70-year-old man experiences a fall resulting in a fractured neck of femur. He undergoes a left hip hemiarthroplasty and two months later presents with an abnormal gait. Upon standing on his left leg, his pelvis dips on the right side, but there is no evidence of foot drop. What could be the underlying cause of this presentation?

      Your Answer: Superior gluteal nerve damage

      Explanation:

      The cause of this patient’s trendelenburg gait is damage to the superior gluteal nerve, resulting in weakened abductor muscles. A common diagnostic test involves asking the patient to stand on one leg, which causes the pelvis to dip on the opposite side. The absence of a foot drop rules out the potential for polio or L5 radiculopathy.

      The gluteal region is composed of various muscles and nerves that play a crucial role in hip movement and stability. The gluteal muscles, including the gluteus maximus, medius, and minimis, extend and abduct the hip joint. Meanwhile, the deep lateral hip rotators, such as the piriformis, gemelli, obturator internus, and quadratus femoris, rotate the hip joint externally.

      The nerves that innervate the gluteal muscles are the superior and inferior gluteal nerves. The superior gluteal nerve controls the gluteus medius, gluteus minimis, and tensor fascia lata muscles, while the inferior gluteal nerve controls the gluteus maximus muscle.

      If the superior gluteal nerve is damaged, it can result in a Trendelenburg gait, where the patient is unable to abduct the thigh at the hip joint. This weakness causes the pelvis to tilt down on the opposite side during the stance phase, leading to compensatory movements such as trunk lurching to maintain a level pelvis throughout the gait cycle. As a result, the pelvis sags on the opposite side of the lesioned superior gluteal nerve.

    • This question is part of the following fields:

      • Neurological System
      16.8
      Seconds
  • Question 14 - A 50-year-old woman presents to her primary care physician with complaints of fatigue...

    Correct

    • A 50-year-old woman presents to her primary care physician with complaints of fatigue and trouble staying alert while watching TV or reading, particularly in the evenings. Upon examination, she is diagnosed with myasthenia gravis. What is the underlying mechanism for this condition?

      Your Answer: Antibodies are produced against acetylcholine receptors

      Explanation:

      The accurate explanation is that myasthenia gravis involves the production of antibodies against acetylcholine receptors, leading to a decrease in the amount of available acetylcholine for use in the neuromuscular junction.

      Myasthenia gravis is an autoimmune disorder that results in muscle weakness and fatigue, particularly in the eyes, face, neck, and limbs. It is more common in women and is associated with thymomas and other autoimmune disorders. Diagnosis is made through electromyography and testing for antibodies to acetylcholine receptors. Treatment includes acetylcholinesterase inhibitors and immunosuppression, and in severe cases, plasmapheresis or intravenous immunoglobulins may be necessary.

    • This question is part of the following fields:

      • Neurological System
      30.5
      Seconds
  • Question 15 - A different patient, presenting with symptoms of fatigue, polyuria and bone pains, is...

    Incorrect

    • A different patient, presenting with symptoms of fatigue, polyuria and bone pains, is found to have a history of renal stones and depression. Blood tests reveal high serum calcium and parathyroid hormone levels, and low phosphate levels, leading to a suspected diagnosis of hyperparathyroidism. Imaging confirms the presence of a parathyroid adenoma, and the patient is started on treatment including a phosphate supplement for symptom relief. In this patient, where will the supplementary electrolyte primarily be reabsorbed?

      Your Answer: Distal tubule

      Correct Answer: Proximal tubule

      Explanation:

      The proximal tubule is responsible for the reabsorption of phosphate. This patient’s symptoms are consistent with hyperparathyroidism, which causes an increase in serum calcium levels and a decrease in phosphate levels due to increased osteoclast activity, increased renal and intestinal absorption of calcium, and reduced renal reabsorption of phosphate from the proximal tubule. Treatment for primary hyperparathyroidism typically involves a parathyroidectomy, but medical treatment can be used if surgery is not possible.

      The distal tubules absorb electrolytes such as sodium, potassium, and calcium, and play a role in pH regulation through the absorption and secretion of bicarbonate and protons. However, only a minimal amount of phosphate is reabsorbed in the distal tubules.

      The duodenum and jejunum are responsible for the absorption of iron and folate, respectively, but only a small amount of phosphate is reabsorbed in the gastrointestinal tract as a whole.

      The loop of Henle reabsorbs several electrolytes, including sodium, potassium, chloride, magnesium, and calcium, but only a relatively small amount of phosphate is reabsorbed in this aspect of the renal tract.

      The terminal ileum absorbs vitamin B12 and bile salts, but again, only a very small amount of phosphate is reabsorbed in the GI tract.

      Maintaining Calcium Balance in the Body

      Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.

      PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.

      Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.

      Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.

      Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.

    • This question is part of the following fields:

      • Neurological System
      17.3
      Seconds
  • Question 16 - Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast...

    Incorrect

    • Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast removed from her lower limb. During the examination, it is observed that her right foot is in a plantar flexed position, indicating foot drop.

      The physician proceeds to assess the sensation in Sarah's lower limb and feet and discovers a reduction in the area innervated by the deep fibular nerve.

      What specific region of Sarah's lower limb or foot is likely to be impacted by this condition?

      Your Answer: Medial aspect of the leg

      Correct Answer: Webspace between the first and second toes

      Explanation:

      The webbing between the first and second toes is innervated by the deep fibular nerve. The saphenous nerve, which arises from the femoral nerve, provides cutaneous innervation to the medial aspect of the leg. The sural nerve, which arises from the common fibular and tibial nerves, innervates the lateral foot. The majority of innervation to the dorsum of the foot comes from the superficial fibular nerve.

      The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.

    • This question is part of the following fields:

      • Neurological System
      22.8
      Seconds
  • Question 17 - A laceration of the wrist produces a median nerve transection in a 50-year-old...

    Incorrect

    • A laceration of the wrist produces a median nerve transection in a 50-year-old patient. The wound is clean and seen immediately after injury. Collateral soft tissue damage is absent. The patient asks what the prognosis is. You indicate that the nerve should regrow at approximately:

      Your Answer: None of the above

      Correct Answer: 1 mm per day

      Explanation:

      When a peripheral nerve is cut, it causes bleeding and the nerve ends retract. The axon, which is the part of the nerve that transmits signals, starts to degenerate immediately after the injury. This degeneration occurs both in the part of the nerve that is distal to the injury and in the part that is proximal to the first node of Ranvier. As the degenerated axonal fragments are removed by phagocytosis, empty spaces are left in the neurilemmal sheath where the axons used to be.

      After a few days, axons from the proximal part of the nerve start to regrow. If they are able to make contact with the distal neurilemmal sheath, they can regrow at a rate of about 1 mm per day. However, if there is any trauma, fracture, infection, or separation of the neurilemmal sheath ends that prevents contact between the axons, the regrowth can be erratic and may result in the formation of a traumatic neuroma.

      In cases where the nerve injury is accompanied by significant soft tissue damage and bleeding (which increases the risk of infection), some surgeons may choose to delay the reattachment of the severed nerve ends for several weeks.

      Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.

      Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.

    • This question is part of the following fields:

      • Neurological System
      15.8
      Seconds
  • Question 18 - A 75-year-old woman visits her GP complaining of difficulty eating and weight loss...

    Correct

    • A 75-year-old woman visits her GP complaining of difficulty eating and weight loss that has persisted for three months. She has a medical history of hypertension, type 2 diabetes mellitus, dyslipidemia, and osteoporosis.

      During the examination, the patient's body appears cachectic. Fasciculation of the tongue is observed in the oral cavity, and when asked to stick her tongue out, it deviates to the left. The patient is unable to move her tongue towards her right side.

      Based on these findings, where is the most likely location of the lesion?

      Your Answer: Left hypoglossal nerve

      Explanation:

      The tongue deviates towards the side of the lesion in a hypoglossal nerve palsy, with the left hypoglossal nerve being the correct answer. Lesions of the Edinger-Westphal nucleus, left facial nerve, and right facial nerve would not cause tongue deviation as they do not control tongue movements.

      Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.

      In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      19.2
      Seconds
  • Question 19 - A 55-year-old male arrives at the emergency department with his wife. Upon speaking...

    Correct

    • A 55-year-old male arrives at the emergency department with his wife. Upon speaking with him, you observe that he has non-fluent haltering speech. His wife reports that he has been experiencing alterations in his sense of smell.

      Which region of the brain is the most probable site of damage?

      Your Answer: Frontal lobe

      Explanation:

      Anosmia, a partial or complete loss of sense of smell, may be caused by lesions in the frontal lobe. Additionally, these lesions can result in Broca’s aphasia, which causes non-fluent, laboured, and halting speech. Lesions in the temporal lobe can lead to superior homonymous quadrantanopia, while lesions in the parietal lobe can cause sensory inattention. Lesions in the occipital lobe can affect vision, and lesions in the cerebellum can cause intention tremor, ataxia, and dysdiadochokinesia.

      Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.

      In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.

    • This question is part of the following fields:

      • Neurological System
      14.1
      Seconds
  • Question 20 - A 45-year-old man comes to the emergency department with a complaint of waking...

    Correct

    • A 45-year-old man comes to the emergency department with a complaint of waking up with a severe headache for the past three days. He has been feeling increasingly nauseated and has vomited three times in the last 24 hours. During the examination, it was found that he has reduced power in his left upper limb and bilateral papilloedema. A CT scan of his head revealed a mass on the right side, close to the midline in the posterior frontal lobe. The mass is blocking the drainage of cerebrospinal fluid (CSF) into the third ventricle, causing enlargement of the lateral ventricle on the right side. Can you identify the structure through which CSF from the lateral ventricle drains into the third ventricle?

      Your Answer: Interventricular foramen

      Explanation:

      The interventricular foramina allow the two lateral ventricles to drain into the third ventricle, which is located in the midline between the thalami of the two hemispheres. The third ventricle is connected to the fourth ventricle via the cerebral aqueduct (of Sylvius). CSF flows from the third ventricle into the fourth ventricle and exits through one of four openings: the median aperture (foramen of Magendie), either of the two lateral apertures (foramina of Luschka), or the central canal at the obex.

      The patient described in the question is exhibiting symptoms and signs that suggest an increase in intracranial pressure, which can be caused by various factors such as mass lesions and neoplasms. In this case, a mass is obstructing the normal flow of CSF through the ventricular system, leading to an increase in intracranial pressure and resulting in a motor deficit on the opposite side of the body. Symptoms of raised ICP may include vomiting, headaches that worsen when lying down or upon waking, changes in mental state, and papilloedema.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      19.7
      Seconds
  • Question 21 - A 50-year-old man has been diagnosed with early onset Alzheimer's disease and has...

    Correct

    • A 50-year-old man has been diagnosed with early onset Alzheimer's disease and has a significant family history of the condition. Which gene is the most probable to be mutated?

      Your Answer: Presenilin 1 gene (PSEN1)

      Explanation:

      Mutations in the amyloid precursor protein gene (APP), presenilin 1 gene (PSEN1), or presenilin 2 gene (PSEN2) are responsible for early onset familial Alzheimer’s disease, which is inherited in an autosomal dominant manner. Sporadic Alzheimer’s disease is strongly linked to APOE e4 mutations. Familial Parkinson’s disease is associated with PARK7 mutations, while hereditary motor neuron disease is linked to SOD1 mutations. Trinucleotide repeat mutations are also implicated in certain genetic disorders.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      9.8
      Seconds
  • Question 22 - A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia,...

    Correct

    • A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia, and lacrimation. His pupils constrict in response to light.

      What is the neurotransmitter responsible for this pupillary response?

      Your Answer: Acetylcholine

      Explanation:

      The primary neurotransmitter used by the parasympathetic nervous system is acetylcholine (ACh). This pathway is responsible for activities such as lacrimation and pupil constriction, which are also mediated by ACh.

      On the other hand, the sympathetic pathway uses epinephrine as its neurotransmitter, which is involved in pupil dilation. Norepinephrine is also a neurotransmitter of the sympathetic pathway.

      In the brain, gamma-aminobutyric acid acts as an inhibitory neurotransmitter.

      Understanding the Autonomic Nervous System

      The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.

      The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.

    • This question is part of the following fields:

      • Neurological System
      21.5
      Seconds
  • Question 23 - As a medical student in the memory clinic, I recently encountered an 84-year-old...

    Correct

    • As a medical student in the memory clinic, I recently encountered an 84-year-old female patient who was taking memantine. Can you explain the mechanism of action of this medication?

      Your Answer: NMDA antagonist

      Explanation:

      Memantine, an NMDA receptor antagonist, is a drug commonly used in the treatment of various neurological disorders, such as Alzheimer’s disease. Its primary mode of action is thought to involve the inhibition of current flow through NMDA receptor channels, which are a type of glutamate receptor subfamily that plays a significant role in brain function.

      Management of Alzheimer’s Disease

      Alzheimer’s disease is a type of dementia that progressively affects the brain and is the most common form of dementia in the UK. There are both non-pharmacological and pharmacological management options available for patients with Alzheimer’s disease.

      Non-pharmacological management involves offering activities that promote wellbeing and are tailored to the patient’s preferences. Group cognitive stimulation therapy, group reminiscence therapy, and cognitive rehabilitation are some of the options that can be considered.

      Pharmacological management options include acetylcholinesterase inhibitors such as donepezil, galantamine, and rivastigmine for managing mild to moderate Alzheimer’s disease. Memantine, an NMDA receptor antagonist, is a second-line treatment option that can be used for patients with moderate Alzheimer’s who are intolerant of or have a contraindication to acetylcholinesterase inhibitors. It can also be used as an add-on drug to acetylcholinesterase inhibitors for patients with moderate or severe Alzheimer’s or as monotherapy in severe Alzheimer’s.

      When managing non-cognitive symptoms, NICE does not recommend the use of antidepressants for mild to moderate depression in patients with dementia. Antipsychotics should only be used for patients at risk of harming themselves or others or when the agitation, hallucinations, or delusions are causing them severe distress.

      It is important to note that donepezil is relatively contraindicated in patients with bradycardia, and adverse effects may include insomnia. Proper management of Alzheimer’s disease can improve the quality of life for patients and their caregivers.

    • This question is part of the following fields:

      • Neurological System
      12.9
      Seconds
  • Question 24 - An 80-year-old man arrives at the emergency department with sudden difficulty in speech,...

    Incorrect

    • An 80-year-old man arrives at the emergency department with sudden difficulty in speech, but is otherwise asymptomatic. Upon taking his medical history, it is noted that he is having trouble generating fluent speech, although the meaning of his speech is preserved and appropriate to the questions he is being asked. His Glasgow coma score is 15/15 and cranial nerves examination is unremarkable. Additionally, he has power 5/5 in all four limbs, and his tone, sensation, coordination, and reflexes are normal. A CT head scan reveals an ischaemic stroke in the left lateral aspect of the frontal lobe. Which vessel occlusion is responsible for his symptoms?

      Your Answer: Inferior left middle cerebral artery

      Correct Answer: Superior left middle cerebral artery

      Explanation:

      Broca’s area is located in the left inferior frontal gyrus and is supplied by the superior division of the left middle cerebral artery. If this artery becomes occluded, it can result in an acute onset of expressive aphasia, which is the type of aphasia that this man is experiencing.

      It is important to note that Wernicke’s area is supplied by the inferior left middle cerebral artery, and occlusion of this branch would result in receptive aphasia instead of expressive aphasia.

      The external carotid arteries supply blood to the face and neck, not the brain.

      Occlusion of an internal carotid artery typically causes amaurosis fugax and does not supply blood to Broca’s area, so it would not result in expressive aphasia.

      The anterior cerebral arteries supply the antero-medial areas of each hemisphere of the brain, but they do not have a temporal branch and do not supply Broca’s area, which is located on the temporal aspect of the frontal lobe.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      43.9
      Seconds
  • Question 25 - A teenage boy is undergoing a procedure to remove an abscess on his...

    Correct

    • A teenage boy is undergoing a procedure to remove an abscess on his back. While being put under general anesthesia, he is administered fentanyl intravenously for pain relief.

      What characteristics of fentanyl make it a preferable choice in this situation over other opioids such as morphine?

      Your Answer: Fentanyl is more lipophilic and therefore has a faster onset

      Explanation:

      Fentanyl analgesic onset is faster than morphine because of its higher lipophilicity, allowing it to penetrate the CNS more rapidly.

      When inducing anesthesia, it is crucial to have a quick-acting analgesic to minimize the physical response to intubation. Fentanyl’s greater lipophilicity enables it to cross the blood-brain barrier more efficiently, resulting in a faster effect on the CNS.

      Both fentanyl and morphine bind to opioid receptors in the CNS, producing their effects.

      Due to its higher potency, fentanyl requires a smaller dosage than morphine.

      As a synthetic opioid, fentanyl causes less nausea and vomiting.

      Understanding Opioids: Types, Receptors, and Clinical Uses

      Opioids are a class of chemical compounds that act upon opioid receptors located within the central nervous system (CNS). These receptors are G-protein coupled receptors that have numerous actions throughout the body. There are three clinically relevant groups of opioid receptors: mu (ยต), kappa (ฮบ), and delta (ฮด) receptors. Endogenous opioids, such as endorphins, dynorphins, and enkephalins, are produced by specific cells within the CNS and their actions depend on whether ยต-receptors or ฮด-receptors and ฮบ-receptors are their main target.

      Drugs targeted at opioid receptors are the largest group of analgesic drugs and form the second and third steps of the WHO pain ladder of managing analgesia. The choice of which opioid drug to use depends on the patient’s needs and the clinical scenario. The first step of the pain ladder involves non-opioids such as paracetamol and non-steroidal anti-inflammatory drugs. The second step involves weak opioids such as codeine and tramadol, while the third step involves strong opioids such as morphine, oxycodone, methadone, and fentanyl.

      The strength, routes of administration, common uses, and significant side effects of these opioid drugs vary. Weak opioids have moderate analgesic effects without exposing the patient to as many serious adverse effects associated with strong opioids. Strong opioids have powerful analgesic effects but are also more liable to cause opioid-related side effects such as sedation, respiratory depression, constipation, urinary retention, and addiction. The sedative effects of opioids are also useful in anesthesia with potent drugs used as part of induction of a general anesthetic.

    • This question is part of the following fields:

      • Neurological System
      19.1
      Seconds
  • Question 26 - A 56-year-old patient has undergone surgery for thyroid cancer and his family has...

    Incorrect

    • A 56-year-old patient has undergone surgery for thyroid cancer and his family has noticed a change in his voice, becoming more hoarse a week after the surgery. Which nerve is likely to have been damaged during the surgery to cause this change in his voice?

      Your Answer: Superior laryngeal nerve

      Correct Answer: Recurrent laryngeal nerve

      Explanation:

      During surgeries of the thyroid and parathyroid glands, the recurrent laryngeal nerve is at risk due to its close proximity to the inferior thyroid artery. This nerve is responsible for supplying all intrinsic muscles of the larynx (excluding the cricothyroid muscle) that control the opening and closing of the vocal folds, as well as providing sensory innervation below the vocal folds. If damaged, it can result in hoarseness of voice or, in severe cases, aphonia.

      The glossopharyngeal nerve, on the other hand, does not play a role in voice production. Its primary areas of innervation include the posterior part of the tongue, the middle ear, part of the pharynx, the carotid body and carotid sinus, and the parotid gland. It also provides motor supply to the stylopharyngeus muscle. Damage to this nerve typically presents with impaired swallowing and changes in taste.

      The ansa cervicalis is located in the carotid triangle and is unlikely to be damaged during thyroid surgery. However, it may be used to re-innervate the vocal folds in the event of damage to the recurrent laryngeal nerve post-thyroidectomy. The ansa cervicalis primarily innervates the majority of infrahyoid muscles, with the exception of the stylohyoid and thyrohyoid. Damage to these muscles would primarily result in difficulty swallowing.

      Finally, the superior laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is paralyzed, it can cause an inability to produce high-pitched voice, which may go unnoticed in many patients for an extended period of time.

      The Recurrent Laryngeal Nerve: Anatomy and Function

      The recurrent laryngeal nerve is a branch of the vagus nerve that plays a crucial role in the innervation of the larynx. It has a complex path that differs slightly between the left and right sides of the body. On the right side, it arises anterior to the subclavian artery and ascends obliquely next to the trachea, behind the common carotid artery. It may be located either anterior or posterior to the inferior thyroid artery. On the left side, it arises left to the arch of the aorta, winds below the aorta, and ascends along the side of the trachea.

      Both branches pass in a groove between the trachea and oesophagus before entering the larynx behind the articulation between the thyroid cartilage and cricoid. Once inside the larynx, the recurrent laryngeal nerve is distributed to the intrinsic larynx muscles (excluding cricothyroid). It also branches to the cardiac plexus and the mucous membrane and muscular coat of the oesophagus and trachea.

      Damage to the recurrent laryngeal nerve, such as during thyroid surgery, can result in hoarseness. Therefore, understanding the anatomy and function of this nerve is crucial for medical professionals who perform procedures in the neck and throat area.

    • This question is part of the following fields:

      • Neurological System
      18.8
      Seconds
  • Question 27 - A 35-year-old man visits his doctor with complaints of blurry vision that has...

    Incorrect

    • A 35-year-old man visits his doctor with complaints of blurry vision that has been ongoing for the past two months. The blurriness initially started in his right eye but has now spread to his left eye as well. He denies experiencing any pain or discharge from his eyes but admits to occasionally seeing specks and flashes in his vision.

      During the physical examination, the doctor notices needle injection scars on the patient's forearm. After some reluctance, the patient admits to having a history of heroin use. Upon fundoscopy, the doctor observes white lesions surrounded by areas of hemorrhagic necrotic areas in the patient's retina.

      Which organism is most likely responsible for causing this patient's eye condition?

      Your Answer: Human immunodeficiency virus

      Correct Answer: Cytomegalovirus

      Explanation:

      Understanding Chorioretinitis and Its Causes

      Chorioretinitis is a medical condition that affects the retina and choroid, which are the two layers of tissue at the back of the eye. This condition is characterized by inflammation and damage to these tissues, which can lead to vision loss and other complications. There are several possible causes of chorioretinitis, including syphilis, cytomegalovirus, toxoplasmosis, sarcoidosis, and tuberculosis.

      Syphilis is a sexually transmitted infection caused by the bacterium Treponema pallidum. It can affect various parts of the body, including the eyes, and can lead to chorioretinitis if left untreated. Cytomegalovirus is a common virus that can cause chorioretinitis in people with weakened immune systems, such as those with HIV/AIDS. Toxoplasmosis is a parasitic infection that can be contracted from contaminated food or water, and can also cause chorioretinitis.

      Sarcoidosis is a condition that causes inflammation in various parts of the body, including the eyes. It can lead to chorioretinitis as well as other eye problems such as uveitis and optic neuritis. Tuberculosis is a bacterial infection that can affect the lungs and other parts of the body, including the eyes. It can cause chorioretinitis as well as other eye problems such as iritis and scleritis.

      In summary, chorioretinitis is a serious eye condition that can lead to vision loss and other complications. It can be caused by various infections and inflammatory conditions, including syphilis, cytomegalovirus, toxoplasmosis, sarcoidosis, and tuberculosis. Early diagnosis and treatment are essential for preventing further damage and preserving vision.

    • This question is part of the following fields:

      • Neurological System
      33.3
      Seconds
  • Question 28 - A 54-year-old man comes to the eye emergency department with painless vision loss...

    Correct

    • A 54-year-old man comes to the eye emergency department with painless vision loss in his left eye since waking up this morning. He has a medical history of hypertension and diabetes, and is currently taking ramipril and metformin. Upon examination, the patient has decreased visual acuity in his left eye. The doctor suspects that atherosclerotic changes have caused blockage of the short posterior ciliary arteries.

      What clinical findings would indicate this diagnosis?

      Your Answer: Relative afferent pupil defect (RAPD)

      Explanation:

      Painless monocular loss of vision and RAPD can be caused by occlusion of the short posterior ciliary arteries.

      Non-arteritic anterior ischaemic optic neuropathy is more likely to occur in males aged 40-60 with hypertension, diabetes, and arteriopathy.

      Giant cell arteritis should be suspected in patients with jaw claudication and weight loss.

      A down and out palsy is a symptom of oculomotor nerve palsy, not optic neuropathy.

      Sudden loss of vision can be a scary symptom for patients, but it can be caused by a variety of factors. Transient monocular visual loss (TMVL) is a term used to describe a sudden, temporary loss of vision that lasts less than 24 hours. The most common causes of sudden painless loss of vision include ischaemic/vascular issues, vitreous haemorrhage, retinal detachment, and retinal migraine.

      Ischaemic/vascular issues, also known as ‘amaurosis fugax’, can be caused by a wide range of factors such as thrombosis, embolism, temporal arteritis, and hypoperfusion. It may also represent a form of transient ischaemic attack (TIA) and should be treated similarly with aspirin 300mg. Altitudinal field defects are often seen, and ischaemic optic neuropathy can occur due to occlusion of the short posterior ciliary arteries.

      Central retinal vein occlusion is more common than arterial occlusion and can be caused by glaucoma, polycythaemia, and hypertension. Severe retinal haemorrhages are usually seen on fundoscopy. Central retinal artery occlusion, on the other hand, is due to thromboembolism or arteritis and features include afferent pupillary defect and a ‘cherry red’ spot on a pale retina.

      Vitreous haemorrhage can be caused by diabetes, bleeding disorders, and anticoagulants. Features may include sudden visual loss and dark spots. Retinal detachment may be preceded by flashes of light or floaters, which are also symptoms of posterior vitreous detachment. Differentiating between these conditions can be done by observing the specific symptoms such as a veil or curtain over the field of vision, straight lines appearing curved, and central visual loss. Large bleeds can cause sudden visual loss, while small bleeds may cause floaters.

    • This question is part of the following fields:

      • Neurological System
      34.4
      Seconds
  • Question 29 - A 79-year-old woman is observed four days after experiencing an ischaemic stroke, treated...

    Correct

    • A 79-year-old woman is observed four days after experiencing an ischaemic stroke, treated with antiplatelet therapy. During evaluation, she is instructed to repeat the sentence 'touch your nose with your finger' and then perform the action. She successfully touches her nose with her finger, but her verbal response is incoherent and non-fluent. What type of aphasia is she displaying?

      Your Answer: Broca's

      Explanation:

      This individual is experiencing Broca’s dysphasia, which is characterized by non-fluent speech, normal comprehension, and impaired repetition. This is likely due to a recent neurological insult that has resulted in higher cognitive dysfunction, specifically aphasia. Broca’s area, located in the posterior inferior frontal gyrus of the dominant hemisphere, is responsible for generating compressible words and is typically supplied by the superior division of the left MCA. Conductive aphasia, on the other hand, involves normal, fluent speech but poor repetition and is caused by a stroke involving the connection between different areas of the brain.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      14.6
      Seconds
  • Question 30 - A 45-year-old obese woman has recently been diagnosed with idiopathic intracranial hypertension and...

    Incorrect

    • A 45-year-old obese woman has recently been diagnosed with idiopathic intracranial hypertension and is experiencing blurred vision. Her blood tests are normal, and a CT scan of her head shows no signs of bleeding, tumors, or hydrocephalus. During a lumbar puncture, her opening pressure is measured at 30cmH2O. Her vision continues to deteriorate, and she is transferred to a neurosurgical center where her intracranial pressure is measured at 40mmHg. What is the cerebral perfusion pressure of this patient?

      Your Answer: 63

      Correct Answer: 53

      Explanation:

      The calculation for cerebral perfusion pressure involves subtracting the intracranial pressure from the mean arterial pressure, resulting in a value of 53mmHg.

      Understanding Raised Intracranial Pressure

      As the brain and ventricles are enclosed by a rigid skull, any additional volume such as haematoma, tumour, or excessive cerebrospinal fluid (CSF) can lead to a rise in intracranial pressure (ICP). The normal ICP in adults in the supine position is 7-15 mmHg. Cerebral perfusion pressure (CPP) is the net pressure gradient causing cerebral blood flow to the brain, and it is calculated by subtracting ICP from mean arterial pressure.

      Raised intracranial pressure can be caused by various factors such as idiopathic intracranial hypertension, traumatic head injuries, infection, meningitis, tumours, and hydrocephalus. Its features include headache, vomiting, reduced levels of consciousness, papilloedema, and Cushing’s triad, which is characterized by widening pulse pressure, bradycardia, and irregular breathing.

      To investigate raised intracranial pressure, neuroimaging such as CT or MRI is key to determine the underlying cause. Invasive ICP monitoring can also be done by placing a catheter into the lateral ventricles of the brain to monitor the pressure, collect CSF samples, and drain small amounts of CSF to reduce the pressure. A cut-off of > 20 mmHg is often used to determine if further treatment is needed to reduce the ICP.

      Management of raised intracranial pressure involves investigating and treating the underlying cause, head elevation to 30ยบ, IV mannitol as an osmotic diuretic, controlled hyperventilation to reduce pCO2 and vasoconstriction of the cerebral arteries, and removal of CSF through techniques such as drain from intraventricular monitor, repeated lumbar puncture, or ventriculoperitoneal shunt for hydrocephalus.

    • This question is part of the following fields:

      • Neurological System
      42.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (20/30) 67%
Passmed