-
Question 1
Incorrect
-
Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome?
Your Answer: They have a fixed length
Correct Answer: They are arranged in a 9+2 formation in cilia
Explanation:Microtubules and Chediak-Higashi Syndrome
Microtubules are structures composed of alpha and beta tubulin dimers that are arranged in a helix and can be added or removed to vary the length. They are found in flagella, mitotic spindles, and cilia, where they have a 9+2 arrangement. Chemotherapy agents, such as taxanes, target microtubules in breast cancer treatment.
Chediak-Higashi syndrome is an autosomal recessive condition that presents with albinism, bleeding and bruising due to platelet dysfunction, and susceptibility to infections due to abnormal neutrophils. The LYST gene is responsible for lysosomal trafficking proteins and is affected in this syndrome.
In summary, microtubules are important structures in various cellular processes and are targeted in cancer treatment. Chediak-Higashi syndrome is a rare genetic disorder that affects lysosomal trafficking proteins and presents with various symptoms.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 2
Incorrect
-
A 65-year-old patient with suspected spinal cord compression has been admitted to the neurosurgical team for an urgent MRI of the spine. Which particle's magnetic properties does magnetic resonance imaging rely predominantly upon?
Your Answer: Electron
Correct Answer: Hydrogen ion (proton)
Explanation:How MRI Scanners Use Hydrogen Ions to Create Images
MRI scanners use the magnetic properties of hydrogen ions, also known as protons, to create images of the human body. These protons have nuclear spin, which means they have magnetic vectors that can be aligned in an electromagnet. The scanner bombards the protons with radiofrequency radiation, causing them to release energy when they return to their resting state. This energy release is recorded and used to construct the MRI image.
While other nuclei, such as carbon 13, also have nuclear spin and could be used in MRI imaging, hydrogen ions are much more abundant in human tissues. This makes them the preferred choice for creating images of the body. The process of aligning the magnetic vectors of the protons and then recording their energy release is repeated many times to create a detailed image of the body’s internal structures.
Overall, MRI scanners use the magnetic properties of hydrogen ions to create detailed images of the human body. This non-invasive imaging technique has revolutionized medical diagnosis and treatment, allowing doctors to see inside the body without the need for surgery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 3
Incorrect
-
At what stage of meiosis does the process of homologous recombination occur?
Your Answer: Telophase II
Correct Answer: Prophase I
Explanation:Homologous Recombination: A Mechanism for DNA Repair and Genetic Variation
Homologous recombination is a process that allows for the exchange of nucleotide sequences between two similar or identical DNA molecules. This occurs during meiosis, specifically during the second phase of prophase I, where sister chromatids swap sequences. The primary purpose of homologous recombination is to accurately repair harmful double-strand DNA breaks. This process results in new combinations of DNA sequences that provide genetic variation in daughter cells and, ultimately, the organism’s offspring.
In prokaryotic organisms such as bacteria and viruses, homologous recombination occurs during horizontal gene transfer. This process involves the exchange of genetic material between different strains and species. Homologous recombination plays a crucial role in the evolution of these organisms by allowing for the acquisition of new traits and adaptations.
Overall, homologous recombination is a vital mechanism for DNA repair and genetic variation. It ensures the accuracy of DNA replication and contributes to the diversity of life on Earth.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 4
Incorrect
-
Over the last five years, the total number of patients admitted and deaths in the East and North Hertfordshire NHS Trust have been recorded. In the year 2010/2011, there were 95,071 patients admitted and 1,912 deaths. What is the crude mortality ratio for this group in that year (per 100 admissions)?
Your Answer: 2.3
Correct Answer: 2
Explanation:In this scenario, the crude mortality ratio is established by comparing the number of deaths occurring within the hospital in a given year to the total number of admissions, disregarding age or gender-specific mortality rates. For instance, with 1,912 deaths out of 95,071 admissions, the ratio computes to 0.02, or 2.0% when calculated per 100 admissions (1,912/95,071 = 0.02/100= 2.0%. When recalculated per 1,000 admissions, the crude admission rate would be 20 per 1,000.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 5
Incorrect
-
What are the primary constituents of the cytoskeleton in eukaryotic cells?
Your Answer: Cilia, flagella and lamellipodia
Correct Answer: Microfilaments, intermediate filaments and microtubules
Explanation:The Eukaryotic Cytoskeleton: A Structural Support System
The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.
Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 6
Incorrect
-
During which phase of aerobic respiration is FADH2 generated?
Your Answer: Pyruvate decarboxylation
Correct Answer: Krebs cycle
Explanation:The Krebs Cycle and the Role of FADH2
The Krebs cycle is a crucial part of aerobic respiration in cells. It involves a series of reactions that convert acetate, derived from carbohydrates, fats, and proteins, into carbon dioxide and energy in the form of ATP. Additionally, the Krebs cycle produces precursors for some amino acids and reducing agents like NADH and FADH2 that are involved in other metabolic pathways.
FAD is a redox cofactor that plays a vital role in the Krebs cycle. It receives two electrons from the sixth reaction of the cycle, where succinate dehydrogenase converts succinate into fumarate by removing two hydrogen atoms and attaching them onto FAD. This process results in FAD gaining two electrons and reducing into FADH2.
FADH2 then donates the electrons to the electron transport chain, which is another part of cellular respiration. This mechanism helps compensate for the relatively low amount of ATP produced by the Krebs cycle (2.5 molecules of ATP per turn) compared to the electron transport chain (26-28 molecules of ATP). Overall, the Krebs cycle and the role of FADH2 are essential for generating energy in cells.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 7
Incorrect
-
The diabetes prevention program has been running for the last 5 years. At baseline, a well conducted study with a sample size of 500 showed that the prevalence of diabetes among adults aged 40 and above was 15%.
Five years later another survey (of 400 responders) showed that the prevalence of diabetes was 10%.
In the above example, which definition of prevalence is correct?Your Answer:
Correct Answer: Prevalence is the number of new and old smokers in a year
Explanation:Prevalence and Incidence in Smoking
Prevalence and incidence are two important concepts in the smoking habits of a population. Prevalence refers to the number of people who smoke at a particular time point, such as at the beginning or end of a study period. This is calculated by dividing the number of smokers by the total population.
On the other hand, incidence refers to the number of new cases of smoking at a particular time point. For example, this could be at the beginning of a study period for the whole year or at the 10th year. This is calculated by dividing the number of new smokers by the number of smoke-free individuals who are potentially at risk of taking up smoking.
prevalence and incidence is important in evaluating the effectiveness of smoking cessation programs and policies. By tracking changes in prevalence and incidence over time, researchers and policymakers can determine whether their efforts are making a difference in reducing smoking rates. Additionally, these concepts can help identify populations that are at higher risk of taking up smoking, allowing for targeted interventions to prevent smoking initiation.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 8
Incorrect
-
What role does vitamin K play in the body?
Your Answer:
Correct Answer: Activation of clotting factors II, VII, IX, X
Explanation:The Roles of Vitamin K in the Body
Vitamin K plays several important roles in the body. One of its main functions is to modify clotting factors II, VII, IX, and X through a process called carboxylation. This modification allows calcium to bind to the factors, which is necessary for them to participate in the clotting pathway. This principle is used in full blood counts to prevent clotting by adding EDTA, which chelates the calcium. Vitamin K also modifies osteocalcin and matrix proteins in bone, as well as nephrocalcin in the kidney, in a similar way.
In addition to its role in blood clotting and bone health, vitamin K is also important for nervous tissue development and growth. However, vitamin K antagonists such as warfarin are sometimes used as anticoagulants to prevent blood clots. It is important to follow guidelines and instructions carefully when using these medications. Overall, vitamin K plays a crucial role in maintaining the health and function of various systems in the body.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 9
Incorrect
-
A 70-year-old male smoker complains of calf pain.
The GP performs a clinical test by raising the patient's legs and observing for the angle at which there is blanching. After one minute, the legs are lowered over the side of the couch so that they are fully dependent with feet on the floor. Reactive hyperaemia is observed.
Which clinical test does this describe?Your Answer:
Correct Answer: Buerger's test
Explanation:Tests for Assessing Arterial and Venous Circulation, Hip Dysfunction, and Meniscal Tear
Buerger’s test is a method used to evaluate the arterial circulation of the lower limb. The test involves observing the angle at which blanching occurs, with a lower angle indicating a higher likelihood of arterial insufficiency. Additionally, the degree of reactive hyperaemia on dependency of the limb after one minute is another positive sign of arterial insufficiency during the test.
Another test used to assess circulation is the Ankle-Brachial Pressure Index (ABPI), which involves using blood pressure cuffs to determine the degree of claudication. McMurray’s test, on the other hand, is used to evaluate for a meniscal tear within the knee joint.
Perthe’s test is a method used to assess the patency of the deep femoral vein prior to varicose vein surgery. Lastly, Trendelenburg’s test is used to evaluate hip dysfunction. These tests are important in diagnosing and treating various conditions related to circulation and joint function.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 10
Incorrect
-
What is the primary role of the nuclear membrane?
Your Answer:
Correct Answer: To regulate transport of molecules in and out of the nucleus
Explanation:The Role of the Nucleus and Nuclear Envelope in Cell Function
The nucleus is a crucial component of eukaryotic cells, serving as the control centre for the cell. It is characterised by a membrane-enclosed structure that contains the cell’s chromosomes and is heavily involved in regulating gene transcription and protein synthesis. The nuclear envelope, which consists of an outer and inner membrane, plays a critical role in regulating the movement of molecules in and out of the nucleus. This is achieved through nuclear pores on the surface of the envelope, which allow the passage of water-soluble molecules. While the incorrect answer options describe minor roles of the nuclear envelope, its primary function is to act as a regulatory barrier for anything that enters or exits the nucleus. Overall, the nucleus and nuclear envelope are essential components of cell function, playing a critical role in regulating gene expression and maintaining cellular homeostasis.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 11
Incorrect
-
What is the final product of glycolysis besides ATP?
Your Answer:
Correct Answer: Pyruvate
Explanation:Glycolysis: The Energy-Producing Reaction
Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.
Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.
Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 12
Incorrect
-
What function does vitamin E serve in the body?
Your Answer:
Correct Answer: Antioxidant
Explanation:Vitamin E and its Functions
Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.
Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 13
Incorrect
-
What RNA base pairs with adenine when synthesizing a complementary RNA strand from DNA, using RNA polymerase to split the helix at specific points?
Your Answer:
Correct Answer: Uracil
Explanation:Differences between DNA and RNA
DNA and RNA differ in several ways. The primary sugar in DNA is deoxyribose, while in RNA it is ribose. Additionally, DNA is double stranded, while RNA is single stranded. This single stranded structure with un-paired bases allows for transcription to occur when the DNA bases are freed. Each base has a specific pairing, with guanine always binding to cytosine and adenine always binding to thymine in the DNA strand. During transcription, the same complementary RNA bases assemble with the DNA bases, except for thymine, which is not an RNA base. Instead, uracil serves as the RNA pyrimidine base equivalent of thymine. Finally, lysine is an amino acid coded for by the RNA base triplet AAA, where A represents adenine.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 14
Incorrect
-
A 29-year-old woman visits your clinic with concerns about a possible pregnancy.
Can you explain the mechanism behind a urinary pregnancy test?Your Answer:
Correct Answer: ELISA
Explanation:Techniques in Biochemistry
Over-the-counter urine pregnancy tests use ELISA to detect beta-HCG in a woman’s urine. The test stick contains antibodies that react with beta-HCG, producing a color change that confirms pregnancy. The urinary pregnancy test is a solid-phase ELISA, where the antibody is immobilized on a specialized filter paper. The fluid travels laterally across the paper to bind with the antibody, and if beta-HCG is present, the line turns blue. Electrophoresis characterizes the electrical charge and size of substances, while PCR identifies specific sequences of DNA or RNA. Radioimmunoassay uses radioactivity to identify specific proteins. Enzymatic degradation breaks down large proteins into smaller subunits for which target antibodies may already exist. This method is used to characterize large proteins for which the structure has not yet been described.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 15
Incorrect
-
What could be a potential cause of metabolic acidosis?
Your Answer:
Correct Answer: Poorly controlled diabetes
Explanation:Acid-Base Imbalances in Different Medical Conditions
Poorly controlled diabetes can cause the breakdown of fatty acids, leading to the production of ketones as an alternative energy source. However, an excess of ketones can result in metabolic acidosis due to their acidic nature. On the other hand, chronic obstructive pulmonary disease (COPD) and suffocation can cause the retention of carbon dioxide, leading to respiratory acidosis. In COPD, there may be a compensatory metabolic alkalosis. Voluntary hyperventilation can cause respiratory alkalosis due to the reduction of carbon dioxide. Vomiting can also lead to metabolic alkalosis. Diabetic ketoacidosis is a complication of type 1 diabetes that results in high blood sugar levels, ketone production, and acidosis.
In summary, different medical conditions can cause acid-base imbalances in the body. It is important to identify the underlying cause of the imbalance to provide appropriate treatment.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 16
Incorrect
-
The arrangement of amphipathic phospholipids in the mammalian cell membrane, what is it like?
Your Answer:
Correct Answer: A lipid bilayer with hydrophilic heads facing out and hydrophobic tails facing in
Explanation:The Function and Structure of the Mammalian Cell Membrane
The mammalian cell membrane serves as a protective barrier that separates the cytoplasm from the extracellular environment. It also acts as a filter for molecules that move across it. Unlike plant and prokaryotic cells, mammalian cells do not have a cell wall. The main component of the cell membrane is a bilayer of amphipathic lipids, which have a hydrophilic head and a hydrophobic tail. The phospholipids in the bilayer are oriented with their hydrophilic heads facing outward and their hydrophobic tails facing inward. This arrangement allows for the separation of the watery extracellular environment from the watery intracellular compartment.
It is important to note that the cell membrane is not a monolayer and the phospholipids are not linked head-to-tail. This is in contrast to DNA, which has a helical chain formation. Overall, the structure and function of the mammalian cell membrane are crucial for maintaining the integrity and proper functioning of the cell.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 17
Incorrect
-
What occurs in eukaryotic prophase?
Your Answer:
Correct Answer: Chromatin condenses into chromosomes
Explanation:The Stages of Prophase in Eukaryotic Mitosis
Prophase is the first stage of eukaryotic mitosis, except for plant cells which have a preprophase stage. During prophase, the cell’s chromatin, which is made up of DNA and associated proteins, condenses into double rod-shaped structures called chromosomes. This process is facilitated by the condensin protein I and/or II complexes. As the chromosomes form, the nuclear membrane and nucleoli disintegrate and disappear, making the chromatin visible.
Before prophase, the cell’s DNA is replicated during interphase, resulting in identical pairs of chromosomes called chromatids. These chromatids attach to each other at a DNA element called the centromere. DNA and centrosome duplication occur during interphase, while chromosome alignment takes place during metaphase. The nuclear membrane and nucleoli re-form during telophase, and the sister chromatids separate during anaphase.
In summary, prophase is the initial stage of eukaryotic mitosis where chromatin condenses into chromosomes, and the nuclear membrane and nucleoli disappear. Chromosome alignment, DNA and centrosome duplication, and re-formation of the nuclear membrane and nucleoli occur in subsequent stages.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 18
Incorrect
-
During which stage of the cell cycle does the replication of DNA occur?
Your Answer:
Correct Answer: S phase
Explanation:The Five Phases of the Cell Cycle
The cell cycle is a complex process that is divided into five main phases, each with its unique cellular events. The first phase is the G0 phase, which is a resting phase where the cell has stopped dividing and is out of the cell cycle. The second phase is the G1 phase, also known as interphase Gap 1, where cells increase in size, and a checkpoint control mechanism prepares the cell for DNA synthesis.
The third phase is the S phase, where DNA replication occurs. The fourth phase is the G2 phase, also known as Gap 2, which is a gap between DNA synthesis and the onset of mitosis. During this phase, the cell continues to grow until it is ready to enter mitosis. Finally, the fifth phase is the M phase, also known as mitosis, where cell growth stops, and the cell focuses its energy to divide into two daughter cells.
A checkpoint in the middle of mitosis, known as the metaphase checkpoint, ensures that the cell is prepared to complete division. the five phases of the cell cycle is crucial in how cells divide and grow.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 19
Incorrect
-
Of which cellular structure is the fibrillar centre a component?
Your Answer:
Correct Answer: The nucleolus
Explanation:The Fibrillar Centre in the Nucleolus
The fibrillar centre is a crucial component of the nucleolus, which is found in most metazoan nucleoli, particularly in higher eukaryotes. Along with the dense fibrillar components and the granular component, it forms the three major components of the nucleolus. During the end of mitosis, the fibrillar centre serves as a storage point for nucleolar ribosomal chromatin and associated ribonucleoprotein transcripts. As the nucleolus becomes active, the ribosomal chromatin and ribonucleoprotein transcripts begin to form the dense fibrillar components, which are more peripherally located and surround the fibrillar centres. The transcription zone for multiple copies of the pre-rRNA genes is the border between these two structures. It is important to note that the fibrillar centre is not a component of any of the cell structures mentioned in the incorrect answer options.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 20
Incorrect
-
What is the fundamental meaning of carbohydrate?
Your Answer:
Correct Answer: A compound following the formula Cx(H2O)y
Explanation:Carbohydrates: Building Blocks of Energy and Storage
Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen, with a general formula of Cx(H2O)y. They can be classified as either aldehydes or ketones and contain multiple hydroxyl groups. Monosaccharides are the simplest form of carbohydrates, consisting of a single unit. They are categorized based on the number of carbon atoms they contain, with trioses having three, pentoses having five, and hexoses having six carbon atoms. These monosaccharides are essential for energy production and building larger carbohydrate structures.
Disaccharides are formed when two monosaccharides are joined together through a condensation reaction, releasing a water molecule. The most common disaccharides are lactose, maltose, and sucrose. Polysaccharides, on the other hand, are long, branched polymers made up of multiple single units. They serve as convenient storage molecules for energy reserves, such as glycogen in humans and starch in plants.
In summary, carbohydrates are vital building blocks for energy production and storage in living organisms. Monosaccharides, disaccharides, and polysaccharides all play important roles in maintaining the body’s energy balance and overall health.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 21
Incorrect
-
What is the primary role of the nucleus in a eukaryotic cell?
Your Answer:
Correct Answer: To regulate gene transcription and translation
Explanation:The Nucleus: Control Centre of the Cell
The nucleus is the control centre of the cell, responsible for regulating gene transcription from DNA into mRNA and from mRNA into peptide/protein synthesis. Eukaryotic cells have a membrane-enclosed organised nucleus, while prokaryotic cells lack this structure. The nuclear structure consists of an outer and inner nuclear membrane that form the nuclear envelope, which has nuclear pores allowing the movement of water-soluble molecules. Inside the nucleus is the nucleoplasm containing the nuclear lamina, a dense fibrillar network that acts as a skeleton and regulates DNA replication and cell division. The nucleus also contains nucleoli, structures involved in the formation of ribosomes responsible for mRNA translation.
Although the incorrect answer options above describe processes in which the nucleus is involved, none of them constitutes its main function within the cell.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 22
Incorrect
-
Which process occurs mainly in the smooth endoplasmic reticulum?
Your Answer:
Correct Answer: Steroid synthesis
Explanation:The Functions of Endoplasmic Reticulum and Lysosomes
The endoplasmic reticulum (ER) is a complex network of membranes that is divided into two types: rough and smooth. The rough ER is characterized by the presence of ribosomes on its cytosolic side, which makes it an important site for protein production, modification, and transport. On the other hand, the smooth ER is involved in cholesterol and steroid handling, as well as calcium storage in some cells. This type of ER is particularly prominent in cells that produce large amounts of steroid hormones, such as those found in the adrenal cortex.
Lysosomes, on the other hand, are organelles that are responsible for breaking down and recycling cellular waste. They are formed by the Golgi apparatus, which is another complex network of membranes found in eukaryotic cells. Lysosomes contain a variety of enzymes that are capable of breaking down different types of molecules, including proteins, lipids, and carbohydrates.
In summary, the ER and lysosomes are two important organelles in eukaryotic cells that play different roles in cellular metabolism. While the ER is involved in protein production, modification, and transport, the lysosomes are responsible for breaking down and recycling cellular waste.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 23
Incorrect
-
A 50-year-old female patient presents to the vascular clinic for evaluation of varicose veins. During the assessment, a test is conducted to determine the site of incompetence. The patient is instructed to lie down, and her legs are raised to empty the veins. A constricting band is then placed below the sapheno-femoral junction, and the patient is asked to stand up to observe for varicose vein filling. What is the name of this test?
Your Answer:
Correct Answer: Tourniquet test
Explanation:Tests for Varicose Veins and Arterial Insufficiency
The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction, while in the tourniquet test, a tourniquet is placed just below the junction. If the veins fill rapidly upon standing, it suggests that the sapheno-femoral junction is not the source of the incompetence.
Buerger’s test is used to assess the arterial circulation of the lower limb. The lower the angle at which blanching occurs, the more likely there is arterial insufficiency. This test is important in diagnosing peripheral artery disease.
The ankle-brachial pressure index (ABPI) is another test used to assess arterial insufficiency. Blood pressure cuffs are used to measure the systolic blood pressure in the ankle and arm. The ratio of the two pressures is calculated, and a lower ratio indicates a higher degree of claudication.
Finally, Perthe’s test is used to assess the patency of the deep femoral vein before varicose vein surgery. This test involves compressing the vein and observing the filling of the superficial veins. If the superficial veins fill quickly, it suggests that the deep femoral vein is patent and can be used for surgery.
In summary, these tests are important in diagnosing and evaluating varicose veins and arterial insufficiency. They help healthcare professionals determine the best course of treatment for their patients.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 24
Incorrect
-
A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?
Your Answer:
Correct Answer: 50%
Explanation:Huntington’s Disease
Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.
The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 25
Incorrect
-
What is a good dietary source of vitamin A?
Your Answer:
Correct Answer: Liver
Explanation:The Importance of Vitamin A in Our Body
Vitamin A is an essential nutrient that can be found in various sources such as liver, fish liver oils, dark green leafy vegetables, carrots, and mangoes. It can also be added to certain foods like cereals and margarines. This nutrient plays a crucial role in our body as it is required for vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways.
One of the primary functions of vitamin A is to support our vision. It is a component of rhodopsin, a pigment that is necessary for the rod cells of the retina. Without vitamin A, our eyesight can be compromised, leading to various eye problems. Additionally, vitamin A is also essential for the growth and development of many types of tissues in our body. It helps in maintaining healthy skin, teeth, and bones.
Moreover, vitamin A is involved in regulating gene transcription, which is the process of converting DNA into RNA. This nutrient also plays a role in the synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. These processes are essential for the proper functioning of our body.
In conclusion, vitamin A is a vital nutrient that our body needs to function correctly. It is essential for our vision, growth and development of tissues, regulation of gene transcription, and synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways. Therefore, it is crucial to include vitamin A-rich foods in our diet or take supplements if necessary.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 26
Incorrect
-
What role does the nucleolus play in eukaryotic cells?
Your Answer:
Correct Answer: To transcribe ribosomal RNA and assemble ribosomes
Explanation:The Nucleolus: Structure and Function
The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.
During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.
Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 27
Incorrect
-
What stage of cellular respiration is responsible for the production of pyruvic acid?
Your Answer:
Correct Answer: Glycolysis
Explanation:The Versatility of Pyruvic Acid in Cellular Metabolism
Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.
Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.
In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 28
Incorrect
-
You are evaluating a geriatric patient in the emergency department who has fallen and needs a venous cannula for fluid resuscitation. To ensure maximum flow into the vein, you plan to apply the Hagen-Poiseuille equation to select an appropriate cannula size. Which of the following statements is true according to this law?
Your Answer:
Correct Answer: Flow will be faster through a shorter cannula
Explanation:Poiseuille’s Equation and Fluid Flow in Cylinders
Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.
It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 29
Incorrect
-
What is the primary function of riboflavin in the B vitamin group?
Your Answer:
Correct Answer: Mopping up free radicals
Explanation:The Role of Riboflavin in the Body
Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.
Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 30
Incorrect
-
What are the potential clinical consequences of a lack of vitamin E?
Your Answer:
Correct Answer: Ataxia
Explanation:Vitamin E Deficiency
Vitamin E deficiency is a rare condition that is more likely to occur in individuals with problems affecting the absorption of dietary fats. This includes those with a history of bowel surgery, pancreatic insufficiency, and cystic fibrosis. Premature infants are also at a higher risk of developing this deficiency as vitamin E does not easily cross the placenta. However, supplementation with vitamin E can reverse the damage in some cases.
The effects of vitamin E deficiency can be severe and can cause spinocerebellar degeneration, which includes limb ataxia, loss of joint position sense, loss of sensation of vibration, and loss of deep tendon reflexes. Additionally, it can cause degeneration of retinal pigments, leading to blindness. In premature infants, it can cause haemolytic anaemia, thrombocytosis, and oedema.
Overall, vitamin E deficiency is crucial in preventing and treating its effects. It is important to identify individuals who are at a higher risk of developing this deficiency and provide them with appropriate supplementation to prevent any long-term damage.
-
This question is part of the following fields:
- Basic Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)