-
Question 1
Incorrect
-
A 15-year-old girl arrives at the Emergency Department after ingesting a handful of her father's anxiety medication. He takes lorazepam 1 mg TID for generalized anxiety disorder which has not responded well to other treatments.
She has consumed 8 mg lorazepam and is now unresponsive, with a respiratory rate of eight per minute and oxygen saturation of 90% on room air.
The patient does not react to verbal stimuli, but responds to a painful sternal rub and attempts to push the examiner's hand away.
Given that the half-life of lorazepam is approximately 10-20 hours, how long will it take for the medication to be eliminated from her system?Your Answer: 120 hours
Correct Answer: 200 hours
Explanation:Clonazepam and Flumazenil in Benzodiazepine Overdose
Conventionally, a drug is considered to be eliminated from the system after four or five half-lives, leaving only a small fraction of the original amount. However, this does not necessarily mean that the drug’s clinical effects have disappeared. For instance, a person who has taken clonazepam, a potent benzodiazepine used to treat certain seizure disorders, may still feel relatively alert even after only one half-life has passed.
Clonazepam is a long-acting benzodiazepine that is approximately 20 times more potent than diazepam. In cases of benzodiazepine overdose, flumazenil may be a useful antidote. Flumazenil is particularly effective in uncomplicated cases of benzodiazepine overdose, and it works by reversing the effects of benzodiazepines on the central nervous system. Therefore, it may be considered as a treatment option for individuals who have taken an excessive amount of clonazepam or other benzodiazepines.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 2
Correct
-
A 50-year-old man comes in with a lipoma situated at the back of the posterior border of the sternocleidomastoid muscle, about 4 cm above the middle third of the clavicle. While performing surgery to remove the growth, problematic bleeding is encountered. What is the most probable origin of the bleeding?
Your Answer: External jugular vein
Explanation:The superficial fascia of the posterior triangle contains the external jugular vein, which runs diagonally and drains into the subclavian vein. Surgeons must be careful during exploration of this area to avoid injuring the external jugular vein and causing excessive bleeding. The internal jugular vein and carotid arteries are located in the anterior triangle, while the third part of the subclavian artery is found in the posterior triangle, not the second part.
The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 6-year-old girl presents with proteinuria, oedema, hypoalbuminaemia, hyperlipidaemia. A diagnosis of nephrotic syndrome secondary to minimal change disease is made.
What is the most suitable medication for treatment in this case?Your Answer: Sulphonylureas
Correct Answer: Steroids
Explanation:Prednisolone is the optimal treatment for minimal change glomerulonephritis presenting with nephrotic syndrome, while the other medications mentioned are not appropriate options.
Minimal change disease is a condition that typically presents as nephrotic syndrome, with children accounting for 75% of cases and adults accounting for 25%. While most cases are idiopathic, a cause can be found in around 10-20% of cases, such as drugs like NSAIDs and rifampicin, Hodgkin’s lymphoma, thymoma, or infectious mononucleosis. The pathophysiology of the disease involves T-cell and cytokine-mediated damage to the glomerular basement membrane, resulting in polyanion loss and a reduction of electrostatic charge, which increases glomerular permeability to serum albumin.
The features of minimal change disease include nephrotic syndrome, normotension (hypertension is rare), and highly selective proteinuria, where only intermediate-sized proteins like albumin and transferrin leak through the glomerulus. Renal biopsy shows normal glomeruli on light microscopy, while electron microscopy shows fusion of podocytes and effacement of foot processes.
Management of minimal change disease involves oral corticosteroids, which are effective in 80% of cases. For steroid-resistant cases, cyclophosphamide is the next step. The prognosis for the disease is generally good, although relapse is common. Roughly one-third of patients have just one episode, one-third have infrequent relapses, and one-third have frequent relapses that stop before adulthood.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Incorrect
-
As a final year medical student, you are assisting a general surgeon in a busy outpatient clinic. A 53-year-old male patient presents with a swelling in his left groin.
Upon examination, the swelling is located superior and medial to the pubic tubercle, it is non-tender, easily reducible, and has a positive cough impulse. The surgeon suspects an inguinal hernia and informs you that there is an anatomical structure immediately above the midpoint of the inguinal ligament.
What is this anatomical structure?Your Answer: Superficial inguinal ring
Correct Answer: Deep inguinal ring
Explanation:Anatomical Landmarks and Structures in the Inguinal Region
The inguinal region is an important area of the body that contains several anatomical landmarks and structures. Two terms that are commonly used in this region are the mid-inguinal point and the mid-point of the inguinal ligament. The mid-inguinal point is located between the anterior superior iliac spine and the symphysis pubis and is often used to palpate the femoral artery. On the other hand, the mid-point of the inguinal ligament is located between the ASIS and the pubic tubercle and is used to identify the area of the deep inguinal ring.
It is important to note that the external iliac artery and inferior epigastric vessels are not commonly palpated in this region. However, the inferior epigastric vessels are used intraoperatively to determine the type of inguinal hernia. An indirect hernia is said to be lateral to the IEV, while a direct hernia appears medial to the IEVs.
The femoral nerve is another important structure in the inguinal region. It is the largest branch of the lumbar plexus and supplies cutaneous innervations to the skin of the thigh and somatic innervations to the quadriceps femoris. Finally, the superficial inguinal ring can be found 1 cm superior and medial to the pubic tubercle and is often palpated to check for the presence of a hernia.
In summary, the inguinal region contains several important anatomical landmarks and structures that are commonly used in clinical practice. these structures and their functions is essential for accurate diagnosis and treatment of conditions in this area.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 5
Incorrect
-
A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?
Your Answer: Hypogonadism
Correct Answer: Absent vas deferens
Explanation:Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 67-year-old man is brought to the emergency department with unilateral weakness and loss of sensation. He is later diagnosed with an ischaemic stroke. After initial treatment, he is started on dipyridamole as part of his ongoing therapy.
What is the mechanism of action of dipyridamole?Your Answer: Cyclooxygenase (COX) 1 and 2 inhibitor
Correct Answer: Non-specific phosphodiesterase inhibitor
Explanation:Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 75-year-old man presents to the clinic with a chief complaint of dyspnea while in a supine position. Despite having a normal ejection fraction, what could be a potential cause for his symptoms?
Your Answer: He has diastolic dysfunction
Explanation:When there is systolic dysfunction, the ejection fraction decreases as the stroke volume decreases. However, in cases of diastolic dysfunction, ejection fraction is not a reliable indicator as both stroke volume and end-diastolic volume may be reduced. Diastolic dysfunction occurs when the heart’s compliance is reduced.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
As a medical student on a surgical team, the FY1 doctor requests that you conduct a group and save blood test for a patient prior to their operation. The patient, who is identified as being in their 50s, has blood group A and therefore has anti-B antibodies. What type of antibodies will they possess?
Your Answer: IgM
Explanation:The IgM antibody is composed of five antibodies joined together and is primarily responsible for clumping antigens. Anti-A and anti-B antibodies are typically IgM and are produced during early childhood due to exposure to environmental factors like bacteria, viruses, and food.
On the other hand, IgG is the most prevalent antibody and exists as a single antibody complex. IgD, on the other hand, is located on the surface of B-lymphocytes.
Blood product transfusion complications can be categorized into immunological, infective, and other complications. Immunological complications include acute haemolytic reactions, non-haemolytic febrile reactions, and allergic/anaphylaxis reactions. Infective complications may arise due to transmission of vCJD, although measures have been taken to minimize this risk. Other complications include transfusion-related acute lung injury (TRALI), transfusion-associated circulatory overload (TACO), hyperkalaemia, iron overload, and clotting.
Non-haemolytic febrile reactions are thought to be caused by antibodies reacting with white cell fragments in the blood product and cytokines that have leaked from the blood cell during storage. These reactions may occur in 1-2% of red cell transfusions and 10-30% of platelet transfusions. Minor allergic reactions may also occur due to foreign plasma proteins, while anaphylaxis may be caused by patients with IgA deficiency who have anti-IgA antibodies.
Acute haemolytic transfusion reaction is a serious complication that results from a mismatch of blood group (ABO) which causes massive intravascular haemolysis. Symptoms begin minutes after the transfusion is started and include a fever, abdominal and chest pain, agitation, and hypotension. Treatment should include immediate transfusion termination, generous fluid resuscitation with saline solution, and informing the lab. Complications include disseminated intravascular coagulation and renal failure.
TRALI is a rare but potentially fatal complication of blood transfusion that is characterized by the development of hypoxaemia/acute respiratory distress syndrome within 6 hours of transfusion. On the other hand, TACO is a relatively common reaction due to fluid overload resulting in pulmonary oedema. As well as features of pulmonary oedema, the patient may also be hypertensive, a key difference from patients with TRALI.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 9
Incorrect
-
A 44-year-old woman presents with varicose veins and has a saphenofemoral disconnection, long saphenous vein stripping to the ankle, and isolated hook phlebectomies. After the surgery, she experiences numbness above her ankle. What is the probable reason for this?
Your Answer: Common peroneal nerve injury
Correct Answer: Saphenous nerve injury
Explanation:Full length stripping of the long saphenous vein below the knee is no longer recommended due to its relation to the saphenous nerve, while the short saphenous vein is related to the sural nerve.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 16-year-old girl presents to the Emergency department with her mother. The mother reports that her daughter has been experiencing worsening breathlessness and facial puffiness for the past 30 minutes. Apart from eczema, the girl has been healthy and is currently taking oral contraceptives. On examination, the girl appears to be in distress, with laboured breathing and stridor but no wheezing. What is the probable cause of her breathlessness?
Your Answer: Pulmonary embolism
Correct Answer: Angio-oedema
Explanation:Noisy Breathing and Atopy in Adolescents
The presence of noisy breathing in an adolescent may indicate the possibility of stridor, which can be caused by an allergic reaction even in an otherwise healthy individual. The history of atopy, or a tendency to develop allergic reactions, further supports the diagnosis of angio-oedema. The sudden onset of symptoms also adds to the likelihood of this diagnosis.
While asthma is a possible differential diagnosis, it typically presents with expiratory wheezing. However, if the chest is silent, it may indicate a severe and life-threatening form of asthma. Therefore, it is important to consider all possible causes of noisy breathing and atopy in adolescents to ensure prompt and appropriate treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
A 70-year-old male has been diagnosed with Alzheimer's disease, but there is no family history of the disease.
Which gene is the most probable to be affected in this individual?Your Answer: Amyloid precursor protein gene (APP)
Correct Answer: APOE ε4 gene
Explanation:The risk of sporadic Alzheimer’s disease is primarily determined by APOE polymorphic alleles, with the ε4 allele carrying the highest risk. Familial Alzheimer’s disease is linked to the APP, PSEN1, and PSEN2 genes, while familial Parkinson’s disease is associated with the PARK genes.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
Which one of the following vessels does not directly drain into the inferior vena cava?
Your Answer: Right testicular vein
Correct Answer: Superior mesenteric vein
Explanation:The portal vein receives drainage from the superior mesenteric vein, while the right and left hepatic veins directly drain into it. This can result in significant bleeding in cases of severe liver lacerations.
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
What electrolyte imbalance is probable in a patient experiencing diarrhea and a palpable soft mass during digital rectal examination?
Your Answer: Hyponatraemia
Correct Answer: Hypokalaemia
Explanation:Rectal secretions from large villous adenomas of the rectum can cause hypokalaemia due to their high potassium content, which is a result of the marked secretory activity of the adenomas.
Understanding Hypokalaemia and its Causes
Hypokalaemia is a condition characterized by low levels of potassium in the blood. Potassium and hydrogen ions are competitors, and as potassium levels decrease, more hydrogen ions enter the cells. Hypokalaemia can occur with either alkalosis or acidosis. In cases of alkalosis, hypokalaemia may be caused by vomiting, thiazide and loop diuretics, Cushing’s syndrome, or Conn’s syndrome. On the other hand, hypokalaemia with acidosis may be caused by diarrhoea, renal tubular acidosis, acetazolamide, or partially treated diabetic ketoacidosis.
It is important to note that magnesium deficiency may also cause hypokalaemia. In such cases, normalizing potassium levels may be difficult until the magnesium deficiency has been corrected. Understanding the causes of hypokalaemia can help in its diagnosis and treatment.
-
This question is part of the following fields:
- Renal System
-
-
Question 14
Incorrect
-
A 63-year-old male presents with right sided hemiplegia. An MRI confirms a diagnosis of a left sided partial anterior circulating stroke. He is treated with high dose aspirin for 14 days. He is then started on clopidogrel which he was unfortunately intolerant of. You therefore start him on dual aspirin and dipyridamole.
What is the mechanism of action of dipyridamole?Your Answer: Direct thrombin inhibitors
Correct Answer: Increases the effects of adenosine
Explanation:Dipyridamole is a medication that inhibits phosphodiesterase enzymes and reduces the uptake of adenosine by cells. This leads to an increase in adenosine levels and a decrease in the breakdown of cAMP. Patients taking dipyridamole should not receive exogenous adenosine treatment, such as for supraventricular tachycardia, due to this interaction.
Clopidogrel is a medication that blocks ADP receptors.
Aspirin is a medication that inhibits cyclo-oxygenase.
Dabigatran and bivalirudin are medications that directly inhibit thrombin.
Tirofiban and abciximab are medications that inhibit glycoprotein IIb/IIIa.
Warfarin inhibits the production of factors II, VII, IX, and X.
Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Correct
-
A 60-year-old patient visits the renal clinic after being diagnosed with stage 4 chronic kidney disease due to hypertension and diabetes. She inquires about the recommended diet for her condition.
What dietary advice should be provided to the patient?Your Answer: Low protein, phosphate, potassium and sodium
Explanation:For individuals with chronic kidney disease, it is recommended to follow a diet that is low in protein, phosphate, potassium, and sodium. This is because protein can produce ammonia, which is not effectively excreted by the kidneys in CKD. Phosphate can combine with calcium to form kidney stones, while sodium can raise blood pressure and further damage the kidneys. Potassium is also not efficiently eliminated by failing kidneys and can lead to irregular heartbeats.
Dietary Recommendations for Chronic Kidney Disease Patients
Chronic kidney disease patients are recommended to follow a specific diet that is low in protein, phosphate, sodium, and potassium. This dietary advice is given to reduce the strain on the kidneys, as these substances are typically excreted by the kidneys. By limiting the intake of these nutrients, patients can help slow the progression of their kidney disease and manage their symptoms more effectively. It is important for patients to work closely with their healthcare provider or a registered dietitian to ensure they are meeting their nutritional needs while following these dietary restrictions. With proper guidance and adherence to this diet, patients with chronic kidney disease can improve their overall health and quality of life.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Incorrect
-
A 54-year-old man complains of facial pain and discomfort during meals. He has been experiencing halitosis and a dry mouth. Additionally, he has a lump under his left mandible. What is the probable underlying diagnosis?
Your Answer: Benign adenoma of the submandibular gland
Correct Answer: Stone impacted in Whartons duct
Explanation:The signs are indicative of sialolithiasis, which usually involves the formation of stones in the submandibular gland and can block Wharton’s duct. Stensen’s duct, on the other hand, is responsible for draining the parotid gland.
Diseases of the Submandibular Glands
The submandibular glands are responsible for producing mixed seromucinous secretions, which can range from more serous to more mucinous depending on parasympathetic activity. These glands secrete approximately 800-1000ml of saliva per day, with parasympathetic fibers derived from the chorda tympani nerves and the submandibular ganglion. However, several conditions can affect the submandibular glands.
One such condition is sialolithiasis, which occurs when salivary gland calculi form in the submandibular gland. These stones are usually composed of calcium phosphate or calcium carbonate and can cause colicky pain and postprandial swelling of the gland. Sialography is used to investigate the site of obstruction and associated stones, with impacted stones in the distal aspect of Wharton’s duct potentially removed orally. However, other stones and chronic inflammation may require gland excision.
Sialadenitis is another condition that can affect the submandibular glands, usually as a result of Staphylococcus aureus infection. This can cause pus to leak from the duct and erythema to be noted. A submandibular abscess may develop, which is a serious complication as it can spread through other deep fascial spaces and occlude the airway.
Finally, submandibular tumors can also affect these glands, with only 8% of salivary gland tumors affecting the submandibular gland. Of these, 50% are malignant, usually adenoid cystic carcinoma. Diagnosis usually involves fine needle aspiration cytology, with imaging using CT and MRI. Due to the high prevalence of malignancy, all masses of the submandibular glands should generally be excised.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 65-year-old man presents to the Emergency Department with confusion, drowsiness, and nausea accompanied by vomiting. His daughter reports that he has been feeling fatigued and unwell with a persistent cough, and he has been smoking 20 cigarettes per day for 45 years. The patient is unable to provide a complete medical history due to his confusion, but he mentions that he sometimes coughs up blood and his urine has been darker than usual. On examination, he appears to be short of breath but euvolaemic. Blood tests reveal low serum sodium, high urinary sodium, low plasma osmolality, and high urinary osmolality. Renal and thyroid function tests are normal. A chest x-ray shows a lung carcinoma, leading you to suspect that this presentation may be caused by a syndrome of inappropriate antidiuretic hormone secretion.
What is the underlying mechanism responsible for the hyponatraemia?Your Answer: Inhibition of the sodium-chloride cotransporters
Correct Answer: Insertion of aquaporin-2 channels
Explanation:The insertion of aquaporin-2 channels is promoted by antidiuretic hormone, which facilitates water reabsorption. However, in the case of syndrome of inappropriate antidiuretic hormone secretion (SiADH), which is caused by small cell lung cancer, the normal negative feedback loop fails, resulting in the continuous production of ADH even when serum osmolality returns to normal. This leads to euvolemic hyponatremia, where the body retains water but continues to lose sodium, resulting in concentrated urine. The underlying mechanism of this condition is the persistent increase in the number of aquaporin-2 channels, which promotes water reabsorption, rather than any effect on sodium transport mechanisms.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
The following result is obtained on a 48-year-old male who is admitted with acute onset chest pain:
Serum Cholesterol 7.3 mmol/L (<5.2)
He has a strong family history of ischaemic heart disease.
What abnormalities might be expected upon examination of this man?Your Answer: Splinter haemorrhages in nail beds
Correct Answer: Tendon nodules
Explanation:Familial Hypercholesterolaemia and its Manifestations
Familial hypercholesterolaemia is a condition characterized by high levels of cholesterol in the blood. This condition is often indicated by the deposition of cholesterol in various parts of the body. The history of the patient suggests that they may be suffering from familial hypercholesterolaemia. The deposition of cholesterol can be observed around the corneal arcus, around the eye itself (xanthelasma), and in tendons such as achilles, knuckles or triceps tendons (tendon xanthomas).
While dietary and lifestyle modifications are recommended, they are usually not enough to manage the condition. High dose lifelong statin therapy is often necessary to control the levels of cholesterol in the blood. It is important to seek medical attention and follow the recommended treatment plan to prevent further complications associated with familial hypercholesterolaemia. The National Institute for Health and Care Excellence (NICE) recommends the use of statin therapy in conjunction with lifestyle modifications for the management of familial hypercholesterolaemia.
-
This question is part of the following fields:
- Pharmacology
-
-
Question 19
Incorrect
-
A gynaecologist is performing a laparoscopic hysterectomy on a 45-year-old patient. He is being careful to avoid damaging a structure that runs close to the vaginal fornices.
What is the structure that the gynaecologist is most likely being cautious of?Your Answer: Ilioinguinal nerve
Correct Answer: Ureter
Explanation:The correct statements are:
– The ureter enters the bladder trigone after passing only 1 cm away from the vaginal fornices, which is closer than other structures.
– The ilioinguinal nerve originates from the first lumbar nerve (L1).
– The femoral artery is a continuation of the external iliac artery.
– The descending colon starts at the splenic flexure and ends at the beginning of the sigmoid colon.
– The obturator nerve arises from the ventral divisions of the second, third, and fourth lumbar nerves.Anatomy of the Ureter
The ureter is a muscular tube that measures 25-35 cm in length and is lined by transitional epithelium. It is surrounded by a thick muscular coat that becomes three muscular layers as it crosses the bony pelvis. This retroperitoneal structure overlies the transverse processes L2-L5 and lies anterior to the bifurcation of iliac vessels. The blood supply to the ureter is segmental and includes the renal artery, aortic branches, gonadal branches, common iliac, and internal iliac. It is important to note that the ureter lies beneath the uterine artery.
In summary, the ureter is a vital structure in the urinary system that plays a crucial role in transporting urine from the kidneys to the bladder. Its unique anatomy and blood supply make it a complex structure that requires careful consideration in any surgical or medical intervention.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 20
Incorrect
-
A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood test is requested to check PTH levels, serum calcium, phosphate and vitamin D.
Which of the following levels also need to be specifically checked?Your Answer: Serum IgA titre
Correct Answer: Magnesium
Explanation:The correct answer is magnesium, as it is necessary for the secretion and function of parathyroid hormone. Adequate magnesium levels are required for the hormone to have its desired effects. CRP, urea, and platelets are not relevant to this situation and do not need to be tested.
Understanding Parathyroid Hormone and Its Effects
Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.
The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.
Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)