-
Question 1
Correct
-
A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?
Your Answer: Anterior tibial
Explanation:The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.
The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
Mr. Johnson, a 68-year-old man visits his doctor with a complaint of experiencing dizzy spells for the past month. He mentions that he started taking a long-acting nitrate for heart failure about three weeks ago.
The doctor takes his sitting blood pressure and compares it to his previous readings.
Current BP 88/72mmHg
BP two months ago 130/90mmHg
The doctor concludes that the new medication has caused hypotension in Mr. Johnson.
What molecular mechanism could be responsible for this change in blood pressure?Your Answer: Nitrate causing a decrease in intracellular calcium
Explanation:The release of nitric oxide caused by nitrates can lead to a decrease in intracellular calcium. This occurs when nitric oxide activates guanylate cyclase, which converts GDP to cGMP. The resulting decrease in intracellular calcium within smooth muscle cells causes vasodilation and can result in hypotension as a side effect. Additionally, flushing may occur as a result of the vasodilation caused by decreased intracellular calcium. It is important to note that nitrates do not affect intracellular potassium or sodium, and do not cause an increase in intracellular calcium, which would lead to smooth muscle contraction and an increase in blood pressure.
Understanding Nitrates and Their Effects on the Body
Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.
The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.
However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 75-year-old man with a medical history of heart failure, ischaemic heart disease, and type 2 diabetes mellitus presents to the cardiology clinic with complaints of dyspnoea and leg swelling. Upon examination, the physician notes bibasal crackles in the lungs and bilateral pitting oedema up to the mid-shin level. The heart sounds are normal. To alleviate the symptoms, the cardiologist prescribes furosemide. Which part of the kidney does furosemide target?
Your Answer: Na-K-2Cl symporter in the thick ascending loop of Henle
Explanation:Furosemide is a medication that is often prescribed to patients with heart failure who have excess fluid in their bodies. It works by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which prevents the reabsorption of sodium. This results in a less hypertonic renal medulla and reduces the osmotic force that causes water to be reabsorbed from the collecting ducts. As a result, more water is excreted through the kidneys.
It is important to be aware of the common side effects of loop diuretics, which are listed in the notes below.
Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 63-year-old male on the wards has come to you with recent onset indigestion. He denies any red flag symptoms and has a medical history of hypertension, congestive heart failure, depression, and gout. Later in the day, while reviewing his routine blood results, you notice an abnormality.
Here are his blood results from two days ago and today:
Parameter 2 days ago Today
Hb 135 g/l 134 g/l
Platelets 310 * 109/l 312 * 109/l
WBC 6.5 * 109/l 6.4 * 109/l
Na+ 142 mmol/l 128 mmol/l
K+ 4.2 mmol/l 3.8 mmol/l
Urea 4.8 mmol/l 4.8 mmol/l
Creatinine 60 µmol/l 61 µmol/l
What could be the reason for the discrepancy in his blood results?Your Answer: Dehydration
Correct Answer: Combined use of indapamide and omeprazole
Explanation:Severe hyponatraemia can occur when PPIs and thiazide diuretics are used together. The patient in question has recently experienced hyponatraemia, which is most likely caused by the combination of indapamide and omeprazole. It is probable that omeprazole was prescribed for his indigestion, while he is likely taking indapamide due to his history of congestive heart failure. It is important to note that the other options listed can cause hypernatraemia, not hyponatraemia.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
A 44-year-old male presents to the hospital with a headache and blurry vision that started two hours ago. He appears drowsy but is oriented to time, place, and person. He has no history of similar episodes and cannot recall the last time he saw a doctor. He denies any chest pain or shortness of breath. His respiratory rate is 16 breaths per minute, heart rate is 91 beats per minute, and blood pressure is 185/118 mmHg. A random blood glucose level is 6.1 mmol/l. The physician decides to initiate treatment with hydralazine, the only available drug at the time. How does this medication work in this patient?
Your Answer: It elevates the levels of cyclic GMP leading to a relaxation of the smooth muscle to a greater extent in the arterioles than the veins
Explanation:Hydralazine is a medication commonly used in the acute setting to lower blood pressure. It works by increasing the levels of cyclic GMP, which leads to smooth muscle relaxation. This effect is more pronounced in the arterioles than the veins. The increased levels of cyclic GMP activate protein kinase G, which phosphorylates and activates myosin light chain phosphatase. This prevents the smooth muscle from contracting, resulting in vasodilation. This mechanism of action is different from calcium channel blockers such as amlodipine, which work by blocking calcium channels. Nitroprusside is another medication that increases cyclic GMP levels, but it is not mentioned as an option in this scenario.
Hydralazine: An Antihypertensive with Limited Use
Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.
Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
A 55-year-old woman with resistant hypertension is currently on ramipril and amlodipine. The GP wants to add a diuretic that primarily acts on the distal convoluted tubule. What diuretic should be considered?
Your Answer: Bendroflumethiazide (thiazide diuretic)
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 22-year-old man was admitted earlier in the day with a fractured fibula following a skateboarding accident. He underwent surgical repair but has suddenly developed a tachycardia on the recovery ward. His vital signs reveal a heart rate of 170 beats/minute, respiratory rate of 20 breaths/minute, and blood pressure of 80/55 mmHg. His ECG shows ventricular tachycardia. The physician decides to perform synchronised DC cardioversion.
What is the most appropriate course of action for this patient?Your Answer: DC cardioversion shock synchronised to the ECG P wave
Correct Answer: DC cardioversion shock synchronised to the ECG R wave
Explanation:When a patient displays adverse features such as shock, syncope, heart failure, or myocardial ischaemia while in ventricular tachycardia, electrical cardioversion synchronized to the R wave is the recommended treatment. If the patient does not respond to up to three synchronized DC shocks, it is important to seek expert help and administer 300mg of IV adenosine. Administering IV fluids would not be an appropriate management choice as it would not affect the patient’s cardiac rhythm.
Cardioversion for Atrial Fibrillation
Cardioversion may be used in two scenarios for atrial fibrillation (AF): as an emergency if the patient is haemodynamically unstable, or as an elective procedure where a rhythm control strategy is preferred. Electrical cardioversion is synchronised to the R wave to prevent delivery of a shock during the vulnerable period of cardiac repolarisation when ventricular fibrillation can be induced.
In the elective scenario for rhythm control, the 2014 NICE guidelines recommend offering rate or rhythm control if the onset of the arrhythmia is less than 48 hours, and starting rate control if it is more than 48 hours or is uncertain.
If the AF is definitely of less than 48 hours onset, patients should be heparinised. Patients who have risk factors for ischaemic stroke should be put on lifelong oral anticoagulation. Otherwise, patients may be cardioverted using either electrical or pharmacological methods.
If the patient has been in AF for more than 48 hours, anticoagulation should be given for at least 3 weeks prior to cardioversion. An alternative strategy is to perform a transoesophageal echo (TOE) to exclude a left atrial appendage (LAA) thrombus. If excluded, patients may be heparinised and cardioverted immediately. NICE recommends electrical cardioversion in this scenario, rather than pharmacological.
If there is a high risk of cardioversion failure, it is recommended to have at least 4 weeks of amiodarone or sotalol prior to electrical cardioversion. Following electrical cardioversion, patients should be anticoagulated for at least 4 weeks. After this time, decisions about anticoagulation should be taken on an individual basis depending on the risk of recurrence.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
What is the most suitable pathological explanation for the initial processes that occur in an abdominal aortic aneurysm in a 67-year-old male with hypertension who is otherwise healthy?
Your Answer: Loss of collagen from the adventitia
Correct Answer: Loss of elastic fibres from the media
Explanation:Aneurysmal disease is characterized by the expansion of all layers of the arterial wall and the depletion of both elastin and collagen. The initial occurrence involves the breakdown of elastic fibers, which leads to the deterioration of collagen fibers.
Understanding the Pathology of Abdominal Aortic Aneurysm
Abdominal aortic aneurysms occur when the elastic proteins within the extracellular matrix fail, resulting in the dilation of all layers of the arterial wall. This degenerative disease is primarily caused by the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration. Aneurysms are typically considered aneurysmal when the diameter of the infrarenal aorta is 3 cm or greater, which is significantly larger than the normal diameter of 1.5cm in females and 1.7cm in males after the age of 50 years.
Smoking and hypertension are major risk factors for the development of aneurysms, while rare but important causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. Understanding the pathology of abdominal aortic aneurysm is crucial in identifying and managing the risk factors associated with this condition. By addressing these risk factors, individuals can reduce their likelihood of developing an aneurysm and improve their overall health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 56-year-old male comes to your clinic complaining of occasional chest pain that usually occurs after meals and typically subsides within a few hours. He has a medical history of bipolar disorder, osteoarthritis, gout, and hyperparathyroidism. Currently, he is undergoing a prolonged course of antibiotics for prostatitis.
During his visit, an ECG reveals a QT interval greater than 520 ms.
What is the most likely cause of the observed ECG changes?
- Lithium overdose
- Paracetamol use
- Hypercalcemia
- Erythromycin use
- Amoxicillin use
Explanation: The most probable cause of the prolonged QT interval is erythromycin use, which is commonly associated with this ECG finding. Given the patient's medical history, it is likely that he is taking erythromycin for his prostatitis. Amoxicillin is not known to cause QT prolongation. Lithium toxicity typically presents with symptoms such as vomiting, diarrhea, tremors, and agitation. Hypercalcemia is more commonly associated with a short QT interval, making it an unlikely cause. Paracetamol is not known to cause QT prolongation.Your Answer: Hypercalcaemia
Correct Answer: Erythromycin use
Explanation:The prolonged QT interval can be caused by erythromycin.
It is highly probable that the patient is taking erythromycin to treat his prostatitis, which is the reason for the prolonged QT interval.
Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.
There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.
LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.
Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 60-year-old male is referred to the medical assessment unit by his physician suspecting a UTI. He has a permanent catheter in place due to urinary retention caused by benign prostatic hypertrophy. His blood test results reveal hypercalcemia. An ultrasound Doppler scan of his neck displays a distinct sonolucent signal indicating hyperactive parathyroid tissue and noticeable vasculature, which is likely the parathyroid veins. What is the structure that the parathyroid veins empty into?
Your Answer:
Correct Answer: Thyroid plexus of veins
Explanation:The veins of the parathyroid gland drain into the thyroid plexus of veins, as opposed to other possible drainage routes.
The cavernous sinus is a dural venous sinus that creates a cavity called the lateral sellar compartment, which is bordered by the temporal and sphenoid bones.
The brachiocephalic vein is formed by the merging of the subclavian and internal jugular veins, and also receives drainage from the left and right internal thoracic vein.
The external vertebral venous plexuses, which are most prominent in the cervical region, consist of anterior and posterior plexuses that freely anastomose with each other. The anterior plexuses are located in front of the vertebrae bodies, communicate with the basivertebral and intervertebral veins, and receive tributaries from the vertebral bodies. The posterior plexuses are situated partly on the posterior surfaces of the vertebral arches and their processes, and partly between the deep dorsal muscles.
The suboccipital venous plexus is responsible for draining deoxygenated blood from the back of the head, and is connected to the external vertebral venous plexuses.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)