00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 47-year-old man comes to your clinic with a complaint of erectile dysfunction...

    Correct

    • A 47-year-old man comes to your clinic with a complaint of erectile dysfunction for the past 6 weeks. He also mentions that his nipples have been lactating. You inform him that these symptoms could be a result of his body producing too much prolactin hormone and suggest testing his serum prolactin levels. Which part of the body secretes prolactin?

      Your Answer: Anterior pituitary

      Explanation:

      The anterior pituitary gland releases prolactin, which can cause hyperprolactinaemia. This condition can lead to impotence, loss of libido, and galactorrhoea in men, and amenorrhoea and galactorrhoea in women. The hypothalamus, parathyroid glands, adrenal gland, and posterior pituitary gland also release hormones that play important roles in maintaining homoeostasis. Hyperprolactinaemia can be caused by various factors, including certain medications.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      18.9
      Seconds
  • Question 2 - As a medical student observing a health visitor in community care, I noticed...

    Incorrect

    • As a medical student observing a health visitor in community care, I noticed that she was measuring the height and weight of all the children. I was curious about what drives growth during the early childhood stage (from birth to 3 years old). Can you explain this to me?

      Your Answer: Growth hormone and insulin

      Correct Answer: Nutrition and insulin

      Explanation:

      Understanding Growth and Factors Affecting It

      Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.

      In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.

      In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.

      It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.

    • This question is part of the following fields:

      • Endocrine System
      7.6
      Seconds
  • Question 3 - A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional...

    Incorrect

    • A 40-year-old woman comes to her doctor complaining of sudden palpitations and occasional headaches without any apparent cause. She has no significant medical history and denies any stress in her personal or professional life. During the examination, she appears to be sweating and has a pale conjunctiva. Her heart rate is 120 beats per minute, regularly regular, and her blood pressure is 150/100 mmHg. The doctor suspects a phaeochromocytoma, a tumor of the adrenal medulla.

      Which test is the most likely to provide a definitive diagnosis?

      Your Answer: 24 hour urinary free cortisol

      Correct Answer: Urinary free adrenaline

      Explanation:

      Extra-adrenal tumors are often located near the aortic bifurcation and can be identified through a urinary free adrenaline test, which measures the levels of adrenaline and noradrenaline produced by the adrenal medulla. Meanwhile, a 24-hour urinary free cortisol test is used to diagnose Cushing’s Disease, which is caused by excessive cortisol production from the zona fasciculata of the adrenal cortex. The aldosterone-renin ratio test is used to diagnose Conn’s Disease, which is caused by excessive aldosterone production from the zona glomerulosa of the adrenal cortex. Androgens are produced by the zona reticularis of the adrenal cortex. Addison’s Disease, a deficiency of cortisol, can be diagnosed through a short synacthen test.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      59.3
      Seconds
  • Question 4 - A 32-year-old male is referred to the endocrine clinic due to a change...

    Incorrect

    • A 32-year-old male is referred to the endocrine clinic due to a change in his shoe size and numbness in his hand. He reports increased sweating and oily skin. The endocrinologist suspects pituitary gland pathology and orders an MRI. What is the most abundant secretory cell type in the anterior pituitary gland?

      Your Answer: Corticotrophs

      Correct Answer: Somatotrophs

      Explanation:

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      32.8
      Seconds
  • Question 5 - A 30-year-old woman complains of menstrual irregularity and galactorrhoea for the past year....

    Incorrect

    • A 30-year-old woman complains of menstrual irregularity and galactorrhoea for the past year. She also experiences occasional headaches. During examination, she was found to have bitemporal superior quadrantanopia. What is the most probable diagnosis?

      Your Answer: Non-functioning pituitary tumour

      Correct Answer: Prolactinoma

      Explanation:

      Prolactinomas cause amenorrhoea, infertility, and galactorrhoea. If the tumour extends outside the sella, visual field defects or other mass effects may occur. Other types of tumours will produce different symptoms depending on their location and structure involved. Craniopharyngiomas originate from the pituitary gland and will produce poralhemianopia if large enough, as well as symptoms related to pituitary hormones. Non-functioning pituitary tumours will have similar symptoms without the pituitary hormone side effects. Tumours of the hypothalamus will present with symptoms of euphoria, headache, weight loss, and mass effect if large enough.

    • This question is part of the following fields:

      • Endocrine System
      12.9
      Seconds
  • Question 6 - A 50-year-old woman with thyroid cancer undergoes a total thyroidectomy. The histology report...

    Incorrect

    • A 50-year-old woman with thyroid cancer undergoes a total thyroidectomy. The histology report reveals a diagnosis of medullary thyroid cancer. What test would be most useful for screening for disease recurrence?

      Your Answer: Serum CA 19-9 Levels

      Correct Answer: Serum calcitonin levels

      Explanation:

      The detection of sub clinical recurrence can be facilitated by monitoring the serum levels of calcitonin, which is often secreted by medullary thyroid cancers.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      41.6
      Seconds
  • Question 7 - Which of the following will increase the volume of pancreatic exocrine secretions? ...

    Correct

    • Which of the following will increase the volume of pancreatic exocrine secretions?

      Your Answer: Cholecystokinin

      Explanation:

      The volume of pancreatic secretions is often increased by cholecystokinin.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      5.4
      Seconds
  • Question 8 - A 47-year-old woman comes in for her yearly diabetic check-up. Despite being on...

    Incorrect

    • A 47-year-old woman comes in for her yearly diabetic check-up. Despite being on metformin and gliclazide for a year, her HbA1c level remains at 57 mmol/mol. She mentions difficulty losing weight, and her BMI is recorded as 36 kg/m². The doctor decides to prescribe sitagliptin. How does this medication lower blood sugar levels?

      Your Answer: Reducing reabsorption of glucose in the kidneys

      Correct Answer: Reducing the peripheral breakdown of incretin

      Explanation:

      DPP-4 inhibitors, also known as gliptins, function by decreasing the breakdown of incretins like GLP-1 in the periphery. This leads to an increase in incretin levels, which in turn lowers blood glucose levels.

      It is important to note that increasing the peripheral breakdown of incretin would have the opposite effect and worsen glycaemic control.

      Metformin, on the other hand, works by enhancing the uptake of insulin in the periphery.

      Reducing the secretion of insulin from the pancreas would not be an effective mechanism and would actually raise glucose levels in the blood.

      SGLT2 inhibitors, such as dapagliflozin, function by reducing the reabsorption of glucose in the kidneys.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      9.9
      Seconds
  • Question 9 - A 38-year-old woman presents to the Emergency Department with a 2-day history of...

    Correct

    • A 38-year-old woman presents to the Emergency Department with a 2-day history of left flank pain. She has been recently diagnosed with osteoporosis after a low-energy, femoral neck fracture.

      Her blood results show the following:

      Na+ 140 mmol/L (135 - 145)
      K+ 3.6 mmol/L (3.5 - 5.0)
      Calcium 2.9 mmol/L (2.1-2.6)
      Phosphate 0.6 mmol/L (0.8-1.4)

      Her urine dip is positive for erythrocytes making a diagnosis of renal calculi likely.

      What is the pathophysiological reason for the low serum phosphate level, given the likely underlying pathology?

      Your Answer: Decreased renal phosphate reabsorption

      Explanation:

      The decrease in renal phosphate reabsorption is caused by PTH.

      The symptoms presented are indicative of a kidney stone, which can be a sign of hyperparathyroidism. Primary hyperparathyroidism, caused by a functioning parathyroid adenoma, can result in low phosphate and high calcium levels. PTH reduces renal phosphate reabsorption, leading to increased phosphate loss in urine. Pituitary adenomas are associated with osteoporosis due to excessive PTH causing bone resorption.

      PTH activates vitamin D, which increases phosphate absorption in the gastrointestinal tract. However, the renal loss of phosphate is greater than the increase in absorption, resulting in a net loss of phosphate when PTH levels are high.

      PTH also increases renal vitamin D activation, leading to increased intestinal absorption of calcium and phosphate, as well as increased osteoclast activity. This results in elevated levels of serum calcium and phosphate.

      Hypothyroidism does not significantly affect phosphate regulation, so it would not cause low serum phosphate levels.

      Increased osteoclast activity caused by PTH leads to bone resorption and the release of calcium and phosphate into the blood. However, the renal loss of phosphate is greater than the increase in serum phosphate due to osteoclast activity, resulting in an overall decrease in serum phosphate levels.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      55.2
      Seconds
  • Question 10 - A 29-year-old woman presents to her GP complaining of a tingling sensation around...

    Incorrect

    • A 29-year-old woman presents to her GP complaining of a tingling sensation around her mouth and intermittent cramps in her legs. Trousseau's sign is positive. Blood results are shown below.

      Urea 4.0 mmol/L (2.0 - 7.0)
      Creatinine 80 µmol/L (55 - 120)
      Calcium 1.95 mmol/L (2.1-2.6)
      Phosphate 1.2 mmol/L (0.8-1.4)
      Vitamin D 150 nmol/L (50-250)
      Parathyroid hormone (PTH) 1.7 pmol/L (1.6-8.5)

      Derangement of what substance may be responsible for this patient's presentation?

      Your Answer: Potassium

      Correct Answer: Magnesium

      Explanation:

      The correct answer is magnesium. Adequate levels of magnesium are necessary for the proper functioning of parathyroid hormone, which can lead to hypocalcemia if magnesium levels are low. Magnesium is also essential for PTH secretion and sensitivity. Amylase, chloride, and potassium are not associated with hypocalcemia. While severe pancreatitis may cause hypocalcemia, it is typically accompanied by other symptoms such as vomiting and epigastric pain. Chloride is not linked to hypocalcemia, and hypomagnesemia can cause hypokalemia, which can lead to muscle weakness, tremors, and arrhythmias, as well as ECG changes such as flattened T waves, prolonged PR and QT intervals, and U waves.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      40
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (3/10) 30%
Passmed