-
Question 1
Incorrect
-
A 42-year-old male comes to the general physician with a painless lump. He is referred to urology and subsequent scans reveal a testicular seminoma with metastasis to the lymph nodes that receive lymphatic drainage from the scrotum.
What are the lymph nodes that receive drainage from the scrotum?Your Answer: Para-aortic lymph nodes
Correct Answer: Superficial inguinal nodes
Explanation:The scrotum’s lymph drainage is received by the superficial inguinal nodes, which serve as the primary lymph node drainage site for this area.
Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.
The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.
Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 2
Incorrect
-
A patient comes to the clinic with a few months of experiencing head fullness and vision deterioration. After undergoing various blood tests, all results appear normal except for an Hb level of 188 g/L. What is linked to primary polycythemia in this case?
Your Answer: Dehydration
Correct Answer: JAK2 mutation
Explanation:JAK2 Mutation and Primary Polycythaemia
Polycythaemia is a condition characterized by an increase in the number of red blood cells in the body. In primary polycythaemia, over 95% of cases are associated with a mutation in the JAK2 pathway. This mutation causes the pathway to be constantly active, leading to the production of red blood cells even in the absence of erythropoietin (EPO). The most common mutation occurs in exon 12, affecting position V617F.
On the other hand, secondary causes of polycythaemia include COPD and smoking, which lower blood oxygenation and trigger the secretion of EPO by the kidney’s peritubular cells. ADPKD also promotes the secretion of increased EPO, resulting in the production and release of more red blood cells. Dehydration, on the other hand, reduces plasma volume, leading to an apparent/relative polycythaemia. While these factors can cause an increase in red blood cells, they are not associated with a primary haematological disorder like the JAK2 mutation.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 3
Incorrect
-
Mr. Johnson is a 72-year-old man who was diagnosed with chronic lymphocytic leukaemia (CLL) 18 months ago. His disease has been stable, however he has now presented with fatigue and splenomegaly. His blood results are shown below.
Hb 85 g/dL
WCC 41 x 109 cells/L
Plts 210 x 109 cells/L
MCV 88 fl
Haptoglobin 115 mg/dL (30-200 mg/dL)
Direct Coombs test Positive
What is the most likely diagnosis?Your Answer:
Correct Answer: Warm autoimmune haemolytic anaemia
Explanation:CLL is linked to warm autoimmune haemolytic anaemia.
Complications of Chronic Lymphocytic Leukaemia
Chronic lymphocytic leukaemia (CLL) is a type of cancer that affects the blood and bone marrow. It can lead to various complications, including anaemia, hypogammaglobulinaemia, and warm autoimmune haemolytic anaemia. Patients with CLL may also experience recurrent infections due to their weakened immune system. However, one of the most severe complications of CLL is Richter’s transformation.
Richter’s transformation occurs when CLL cells transform into a high-grade, fast-growing non-Hodgkin’s lymphoma. This transformation can happen when the leukaemia cells enter the lymph nodes. Patients with Richter’s transformation often become unwell very suddenly and may experience symptoms such as lymph node swelling, fever without infection, weight loss, night sweats, nausea, and abdominal pain.
It is essential for patients with CLL to be aware of the potential complications and to seek medical attention if they experience any concerning symptoms. Regular check-ups and monitoring can also help detect any changes in the condition early on, allowing for prompt treatment and management.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 4
Incorrect
-
A 75-year-old man is diagnosed with paroxysmal atrial fibrillation after presenting to the GP with palpitations. Due to his age and his background of hypertension, he is offered anticoagulation treatment. After drug counselling, he is prescribed apixaban.
What is the mechanism of action of apixaban?Your Answer:
Correct Answer: It directly inhibits factor Xa
Explanation:Apixaban is a medication that directly inhibits factor Xa, which is responsible for the conversion of prothrombin to thrombin in the coagulation cascade. It is used as prophylaxis against embolic events in patients with atrial fibrillation, who are at increased risk due to blood pooling in the atria and potential clot formation. Unlike heparin, which activates antithrombin III to reduce blood clotting, apixaban works independently of antithrombin III. It also does not directly inhibit thrombin, which is the mechanism of action of dabigatran. Antiplatelets, such as aspirin and clopidogrel, work to decrease platelet activation and aggregation, but are not recommended for reducing the risks of embolic events in AF. Apixaban also does not inhibit vitamin K, which is the mechanism of action of warfarin.
Direct oral anticoagulants (DOACs) are medications used to prevent stroke in non-valvular atrial fibrillation (AF), as well as for the prevention and treatment of venous thromboembolism (VTE). To be prescribed DOACs for stroke prevention, patients must have certain risk factors, such as a prior stroke or transient ischaemic attack, age 75 or older, hypertension, diabetes mellitus, or heart failure. There are four DOACs available, each with a different mechanism of action and method of excretion. Dabigatran is a direct thrombin inhibitor, while rivaroxaban, apixaban, and edoxaban are direct factor Xa inhibitors. The majority of DOACs are excreted either through the kidneys or the liver, with the exception of apixaban and edoxaban, which are excreted through the feces. Reversal agents are available for dabigatran and rivaroxaban, but not for apixaban or edoxaban.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 5
Incorrect
-
A mother brings her 6-month-old baby boy to your general practice, as he was diagnosed with DiGeorge syndrome at birth. She was informed that one of the consequences of this condition is the failure of thymus development, which can impact her baby's blood cells. Specifically, which type of blood cell will be affected?
Your Answer:
Correct Answer: T lymphocytes
Explanation:The correct answer is T lymphocytes, as the thymus plays a role in their maturation. DiGeorge syndrome is caused by a microdeletion on chromosome 22, resulting in the failure of development of the third and fourth pharyngeal arches. The syndrome is characterized by cardiac abnormalities, abnormal facies, thymus aplasia, cleft palate, and hypoparathyroidism, which can be remembered with the acronym CATCH.
The Thymus Gland: Development, Structure, and Function
The thymus gland is an encapsulated organ that develops from the third and fourth pharyngeal pouches. It descends to the anterior superior mediastinum and is subdivided into lobules, each consisting of a cortex and a medulla. The cortex is made up of tightly packed lymphocytes, while the medulla is mostly composed of epithelial cells. Hassall’s corpuscles, which are concentrically arranged medullary epithelial cells that may surround a keratinized center, are also present.
The inferior parathyroid glands, which also develop from the third pharyngeal pouch, may be located with the thymus gland. The thymus gland’s arterial supply comes from the internal mammary artery or pericardiophrenic arteries, while its venous drainage is to the left brachiocephalic vein. The thymus gland plays a crucial role in the development and maturation of T-cells, which are essential for the immune system’s proper functioning.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 6
Incorrect
-
A 25-year-old male patient arrives with blunt abdominal trauma and a suspected splenic bleed. The medical team initiates an infusion of tranexamic acid. What is the mechanism of action of tranexamic acid?
Your Answer:
Correct Answer: Inhibition of plasmin
Explanation:The prevention of fibrin degradation is achieved by the inhibition of plasmin through the use of tranexamic acid.
Understanding Tranexamic Acid
Tranexamic acid is a synthetic derivative of lysine that acts as an antifibrinolytic. Its primary function is to bind to lysine receptor sites on plasminogen or plasmin, preventing plasmin from degrading fibrin. This medication is commonly prescribed to treat menorrhagia.
In addition to its use in treating menorrhagia, tranexamic acid has been investigated for its role in trauma. The CRASH 2 trial found that administering tranexamic acid within the first 3 hours of bleeding trauma can be beneficial. In cases of major haemorrhage, tranexamic acid is given as an IV bolus followed by an infusion.
Ongoing research is also exploring the potential of tranexamic acid in treating traumatic brain injury. Overall, tranexamic acid is a medication with important applications in managing bleeding disorders and trauma.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 7
Incorrect
-
A 54-year-old man comes to the clinic complaining of fever and night sweats that have been ongoing for several months. He reports a weight loss of 8 kg during this time and smokes half a pack of cigarettes per day. His temperature is 38 ºC, and he has splenomegaly on physical examination. No lymphadenopathy is observed. Laboratory results show a leukocyte count of 60 * 109, and a low leukocyte alkaline phosphatase level.
What is the most likely finding in this patient?Your Answer:
Correct Answer: t(9;22) translocation
Explanation:Genetics of Haematological Malignancies
Haematological malignancies are cancers that affect the blood, bone marrow, and lymphatic system. These cancers are often associated with specific genetic abnormalities, such as translocations. Here are some common translocations and their associated haematological malignancies:
– Philadelphia chromosome (t(9;22)): This translocation is present in more than 95% of patients with chronic myeloid leukaemia (CML). It results in the fusion of the Abelson proto-oncogene with the BCR gene on chromosome 22, creating the BCR-ABL gene. This gene codes for a fusion protein with excessive tyrosine kinase activity, which is a poor prognostic indicator in acute lymphoblastic leukaemia (ALL).
– t(15;17): This translocation is seen in acute promyelocytic leukaemia (M3) and involves the fusion of the PML and RAR-alpha genes.
– t(8;14): Burkitt’s lymphoma is associated with this translocation, which involves the translocation of the MYC oncogene to an immunoglobulin gene.
– t(11;14): Mantle cell lymphoma is associated with the deregulation of the cyclin D1 (BCL-1) gene.
– t(14;18): Follicular lymphoma is associated with increased BCL-2 transcription due to this translocation.
Understanding the genetic abnormalities associated with haematological malignancies is important for diagnosis, prognosis, and treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 8
Incorrect
-
A 20-year-old male patient complains of lethargy and night sweats. During examination, left supraclavicular lymphadenopathy is detected. A biopsy of the left supraclavicular lymph node is performed by a surgical registrar, and the pathologist identifies Reed-Sternberg cells on the subsequent histology sections. What is the most probable diagnosis?
Your Answer:
Correct Answer: Hodgkin's lymphoma
Explanation:Hodgkin’s disease is characterized by the presence of Reed-Sternberg cells in histological examination.
Causes of Generalised Lymphadenopathy
Generalised lymphadenopathy refers to the enlargement of multiple lymph nodes throughout the body. There are various causes of this condition, including infectious, neoplastic, and autoimmune conditions. Infectious causes include infectious mononucleosis, HIV, eczema with secondary infection, rubella, toxoplasmosis, CMV, tuberculosis, and roseola infantum. Neoplastic causes include leukaemia and lymphoma. Autoimmune conditions such as SLE and rheumatoid arthritis, graft versus host disease, and sarcoidosis can also cause generalised lymphadenopathy. Additionally, certain drugs like phenytoin and to a lesser extent allopurinol and isoniazid can also lead to this condition. It is important to identify the underlying cause of generalised lymphadenopathy to determine the appropriate treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 9
Incorrect
-
A 50-year-old woman has recently been diagnosed with breast cancer and is now undergoing treatment with docetaxel. What is the mechanism of action for this particular treatment?
Your Answer:
Correct Answer: It prevents microtubule depolymerisation and disassembly, decreasing free tubulin
Explanation:Docetaxel, a member of the taxane family, disrupts microtubule function by preventing depolymerisation and disassembly. This reduces free tubulin and halts cell division. Irinotecan inhibits topoisomerase I, preventing relaxation of supercoiled DNA, leading to DNA damage and cell death. Methotrexate inhibits dihydrofolate reductase and thymidylate synthesis, slowing and stopping DNA and protein synthesis necessary for normal cell cycle. Cisplatin binds to DNA, cross-linking and inhibiting replication. Doxorubicin stabilises the topoisomerase II complex, inhibiting DNA and RNA synthesis necessary for cell division.
Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 10
Incorrect
-
A toddler has been admitted following a prolonged chest infection. Recurrent chest and gastrointestinal infections have plagued the child in their first two years of life. Blood antibody titres have revealed reduced levels of IgA, IgG, and IgE, while IgM is three times higher than normal. The patient is currently awaiting gene sequencing results to confirm the suspected diagnosis.
Which gene mutations are responsible for the probable diagnosis?Your Answer:
Correct Answer: CD40
Explanation:Hyper IgM syndrome is caused by mutations in the CD40 gene, which affects the ability of B cells to produce immunoglobulin A, G, and E. While the production of IgM is still possible, the process of switching to other antibodies is impaired due to a lack of activated T-cells. This results in increased susceptibility to infections during early childhood. Treatment options include regular immunoglobulin, antibiotics, and granulocyte-colony stimulating factor (GCS-F).
Overview of Primary Immunodeficiency Disorders
Primary immunodeficiency disorders are conditions that affect the immune system’s ability to fight off infections and diseases. These disorders can be classified based on which component of the immune system is affected. Neutrophil disorders, for example, are caused by a lack of NADPH oxidase, which reduces the ability of phagocytes to produce reactive oxygen species. This leads to recurrent pneumonias and abscesses, particularly due to catalase-positive bacteria and fungi. B-cell disorders, on the other hand, are caused by defects in B cell development, resulting in low antibody levels and recurrent infections. T-cell disorders are caused by defects in T cell development, leading to recurrent viral and fungal diseases. Finally, combined B- and T-cell disorders are caused by defects in both B and T cell development, resulting in recurrent infections and an increased risk of malignancy. Understanding the underlying defects and symptoms of these disorders is crucial for proper diagnosis and treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 11
Incorrect
-
A 20-year-old woman presents to your GP surgery with recurrent nose bleeds. She reports that she sometimes experiences prolonged bleeding after accidental cuts. She is in good health and takes the oral combined contraceptive pill. Her father had mentioned years ago that he also experienced slow wound healing.
Based on the history provided, what is the most probable diagnosis?Your Answer:
Correct Answer: Von Willebrand's disease
Explanation:Von Willebrand’s disease is a genetic cause of coagulation disorders that can result in prolonged bleeding time and nosebleeds. On the other hand, disseminated intravascular coagulation is an acquired condition that does not typically cause increased bleeding time but may occur in patients with sepsis. Acquired hemophilia is also an acquired condition that is not associated with a family history of bleeding disorders. Vitamin K deficiency can lead to increased bleeding time, bruising, and nosebleeds. Reduced liver function can also result in decreased production of clotting factors and an increased risk of bleeding, but this is unlikely to be the cause of the patient’s symptoms based on their medical history.
Understanding Coagulation Disorders
Coagulation disorders refer to conditions that affect the body’s ability to form blood clots. These disorders can be hereditary or acquired. Hereditary coagulation disorders include haemophilia A, haemophilia B, and von Willebrand’s disease. These conditions are caused by genetic mutations that affect the production or function of certain clotting factors in the blood.
On the other hand, acquired coagulation disorders are caused by external factors that affect the body’s ability to form blood clots. These factors include vitamin K deficiency, liver disease, and disseminated intravascular coagulation (DIC). DIC can also cause thrombocytopenia, which is a condition characterized by low platelet counts in the blood. Another acquired coagulation disorder is acquired haemophilia, which is a rare autoimmune disorder that causes the body to produce antibodies that attack clotting factors in the blood.
It is important to understand coagulation disorders as they can lead to serious health complications such as excessive bleeding or blood clots. Treatment for coagulation disorders varies depending on the underlying cause and severity of the condition. It may include medication, blood transfusions, or surgery. Regular monitoring and management of these conditions can help prevent complications and improve quality of life.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 12
Incorrect
-
Which of the following is atypical for Lynch syndrome?
Your Answer:
Correct Answer: It is inherited in an autosomal recessive manner
Explanation:Inheritance of Lynch syndrome follows an autosomal dominant pattern and is identified by the presence of microsatellite instability in DNA mismatch repair genes. Patients with Lynch syndrome are more prone to developing poorly differentiated right-sided colonic tumors.
Genetic Conditions and Their Association with Surgical Diseases
Li-Fraumeni Syndrome is an autosomal dominant genetic condition caused by mutations in the p53 tumour suppressor gene. Individuals with this syndrome have a high incidence of malignancies, particularly sarcomas and leukaemias. The diagnosis is made when an individual develops sarcoma under the age of 45 or when a first-degree relative is diagnosed with any cancer below the age of 45 and another family member develops malignancy under the age of 45 or sarcoma at any age.
BRCA 1 and 2 are genetic conditions carried on chromosome 17 and chromosome 13, respectively. These conditions are linked to developing breast cancer with a 60% risk and an associated risk of developing ovarian cancer with a 55% risk for BRCA 1 and 25% risk for BRCA 2. BRCA2 mutation is also associated with prostate cancer in men.
Lynch Syndrome is another autosomal dominant genetic condition that causes individuals to develop colonic cancer and endometrial cancer at a young age. 80% of affected individuals will get colonic and/or endometrial cancer. High-risk individuals may be identified using the Amsterdam criteria, which include three or more family members with a confirmed diagnosis of colorectal cancer, two successive affected generations, and one or more colon cancers diagnosed under the age of 50 years.
Gardners syndrome is an autosomal dominant familial colorectal polyposis that causes multiple colonic polyps. Extra colonic diseases include skull osteoma, thyroid cancer, and epidermoid cysts. Desmoid tumours are seen in 15% of individuals with this syndrome. Due to colonic polyps, most patients will undergo colectomy to reduce the risk of colorectal cancer. It is now considered a variant of familial adenomatous polyposis coli.
Overall, these genetic conditions have a significant association with surgical diseases, and early identification and management can help reduce the risk of malignancies and other associated conditions.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 13
Incorrect
-
A 44-year-old man presents with a widespread maculopapular rash and fever after undergoing haematopoietic cell transplantation for multiple myeloma. The diagnosis is GVHD. What cell type is primarily responsible for the patient's symptoms?
Your Answer:
Correct Answer: Donor T cells
Explanation:GVHD is a condition where T cells from the donor tissue (the graft) attack healthy cells in the recipient (the host). This can occur after a haematopoietic cell transplantation and is diagnosed based on symptoms such as fever, rash, and gastrointestinal issues. Antigen-presenting cells activate the donor T cells, but do not attack host cells. B cells, host T cells, and mast cells do not contribute to the attack on host tissue in GVHD.
Understanding Graft Versus Host Disease
Graft versus host disease (GVHD) is a complication that can occur after bone marrow or solid organ transplantation. It happens when the T cells in the donor tissue attack the recipient’s cells. This is different from transplant rejection, where the recipient’s immune cells attack the donor tissue. GVHD is diagnosed using the Billingham criteria, which require that the transplanted tissue contains functioning immune cells, the donor and recipient are immunologically different, and the recipient is immunocompromised.
The incidence of GVHD varies, but it can occur in up to 50% of patients who receive allogeneic bone marrow transplants. Risk factors include poorly matched donor and recipient, the type of conditioning used before transplantation, gender disparity between donor and recipient, and the source of the graft.
Acute and chronic GVHD are considered separate syndromes. Acute GVHD typically occurs within 100 days of transplantation and affects the skin, liver, and gastrointestinal tract. Chronic GVHD may occur after acute disease or arise de novo and has a more varied clinical picture.
Diagnosis of GVHD is largely clinical and based on the exclusion of other pathology. Signs and symptoms of acute GVHD include a painful rash, jaundice, diarrhea, nausea, vomiting, and fever. Chronic GVHD can affect the skin, eyes, gastrointestinal tract, and lungs.
Treatment of GVHD involves immunosuppression and supportive measures. Intravenous steroids are the mainstay of treatment for severe cases of acute GVHD, while extended courses of steroid therapy are often needed in chronic GVHD. Second-line therapies include anti-TNF, mTOR inhibitors, and extracorporeal photopheresis. Topical steroid therapy may be sufficient in mild disease with limited cutaneous involvement. However, excessive immunosuppression may increase the risk of infection and limit the beneficial graft-versus-tumor effect of the transplant.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 14
Incorrect
-
A 75-year-old man has a tumour located at the tip of his tongue. Initially, which region will the tumour metastasize to?
Your Answer:
Correct Answer: Submental nodes
Explanation:Lymphatic Drainage of the Tongue
The lymphatic drainage of the tongue varies depending on the location of the tumour. The anterior two-thirds of the tongue have minimal communication of lymphatics across the midline, resulting in metastasis to the ipsilateral nodes being more common. On the other hand, the posterior third of the tongue has communicating networks, leading to early bilateral nodal metastases being more common in this area.
The tip of the tongue drains to the submental nodes and then to the deep cervical nodes, while the mid portion of the tongue drains to the submandibular nodes and then to the deep cervical nodes. If mid tongue tumours are laterally located, they will usually drain to the ipsilateral deep cervical nodes. However, those from more central regions may have bilateral deep cervical nodal involvement. Understanding the lymphatic drainage of the tongue is crucial in determining the spread of tumours and planning appropriate treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 15
Incorrect
-
A 38-year-old with a known diagnosis of G6PD deficiency presents with jaundice and suspected acute haemolysis. He had recently been treated for a suspected urinary tract infection with nitrofurantoin. Blood tests reveal the following results:
Hb 94 g/L (135-180)
Platelets 210* 109/L (150 - 400)
WBC 7.2*109/L (4.0 - 11.0)
Reticulocytes 8.0% (0.2-2.0)
What underlying process is likely occurring in response to these findings?Your Answer:
Correct Answer: Haptoglobin binds free haemoglobin
Explanation:Haptoglobin plays a crucial role in binding free haemoglobin following haemolysis. This binding forms a complex that can be cleared and metabolized by macrophages through CD163 receptors. This process is essential in preventing local toxicity from haemoglobin degradation products, such as free radicals. Therefore, reduced haptoglobin levels upon testing can indicate intravascular haemolysis. It is important to note that haemopexin binds free haem, not haemoglobin itself, and haptoglobin does not bind complexed haemoglobin or free heme.
Understanding Haemolytic Anaemias by Site
Haemolytic anaemias can be classified by the site of haemolysis, either intravascular or extravascular. In intravascular haemolysis, free haemoglobin is released and binds to haptoglobin. As haptoglobin becomes saturated, haemoglobin binds to albumin forming methaemalbumin, which can be detected by Schumm’s test. Free haemoglobin is then excreted in the urine as haemoglobinuria and haemosiderinuria. Causes of intravascular haemolysis include mismatched blood transfusion, red cell fragmentation due to heart valves, TTP, DIC, HUS, paroxysmal nocturnal haemoglobinuria, and cold autoimmune haemolytic anaemia.
On the other hand, extravascular haemolysis occurs when red blood cells are destroyed by macrophages in the spleen or liver. This type of haemolysis is commonly seen in haemoglobinopathies such as sickle cell anaemia and thalassaemia, hereditary spherocytosis, haemolytic disease of the newborn, and warm autoimmune haemolytic anaemia.
It is important to understand the site of haemolysis in order to properly diagnose and treat haemolytic anaemias. While both intravascular and extravascular haemolysis can lead to anaemia, the underlying causes and treatment approaches may differ.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 16
Incorrect
-
A 45-year-old woman presents to her GP with a four-week history of dysphagia, anorexia and weight loss. She has had a hoarse voice for several months.
She has a 40 pack-year smoking history, starting from the age of 16 years. She drinks 30 units a week in the form of binge drinking beer over the weekend. She admits to having a very poor diet consisting mostly of fish and chips. She is noted to have a body mass index of 38kg/m².
The GP refers her under a two-week wait for suspicion of oesophageal cancer.
What risk factors contributed to her increased likelihood of developing this disease?Your Answer:
Correct Answer: Nitrosamines
Explanation:Exposure to nitrosamines is a known risk factor for the development of oesophageal and gastric cancer, particularly squamous cell carcinoma of the oesophagus. Nitrosamines are present in high levels in cigarette smoke, which is a significant source of exposure for this patient. Binge drinking of beer can also lead to high levels of nitrosamine exposure. Additionally, nitrosamines can be found in certain fried foods, such as fish and chips, as well as some cheeses.
Aflatoxin, which is produced by Aspergillus species, is another known risk factor for cancer. Specifically, it increases the risk of developing hepatocellular carcinoma.
Aniline dyes, which are commonly used in industrial dyeing and the rubber industry, have been linked to an increased risk of developing transitional cell carcinoma of the bladder.
Asbestos, which was once widely used in insulation, building materials, and construction, is a well-known carcinogen that increases the risk of developing mesothelioma and bronchial cancers.
Understanding Carcinogens and Their Link to Cancer
Carcinogens are substances that have the potential to cause cancer. These substances can be found in various forms, including chemicals, radiation, and viruses. Aflatoxin, which is produced by Aspergillus, is a carcinogen that can cause liver cancer. Aniline dyes, on the other hand, can lead to bladder cancer, while asbestos is known to cause mesothelioma and bronchial carcinoma. Nitrosamines are another type of carcinogen that can cause oesophageal and gastric cancer, while vinyl chloride can lead to hepatic angiosarcoma.
It is important to understand the link between carcinogens and cancer, as exposure to these substances can increase the risk of developing the disease. By identifying and avoiding potential carcinogens, individuals can take steps to reduce their risk of cancer. Additionally, researchers continue to study the effects of various substances on the body, in order to better understand the mechanisms behind cancer development and to develop new treatments and prevention strategies. With continued research and education, it is possible to reduce the impact of carcinogens on human health.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 17
Incorrect
-
A 68-year-old woman is referred to haematology via the 2-week wait pathway due to worsening thoracic back pain that started 3 weeks ago. There is no history of trauma. Upon examination, the pain is exacerbated by movement and occurs even at rest and during bedtime. Her blood test results show a Hb level of 97 g/L (female normal range: 115-160 g/L), platelets of 200 * 109/L (normal range: 150-400 * 109/L), and WBC count of 4.0 * 109/L (normal range: 4.0-11.0 * 109/L). Additionally, her calcium level is 2.9 mmol/L (normal range: 2.1-2.6 mmol/L), phosphate level is 1.2 mmol/L (normal range: 0.8-1.4 mmol/L), magnesium level is 0.8 mmol/L (normal range: 0.7-1.0 mmol/L), TSH level is 5.0 mU/L (normal range: 0.5-5.5 mU/L), and free thyroxine (T4) level is 16 pmol/L (normal range: 9.0-18 pmol/L). Based on the likely diagnosis, what is the underlying pathophysiology that causes hypercalcemia?
Your Answer:
Correct Answer: Increased osteoclast activity in response to cytokines
Explanation:Increased osteoclast activity in response to cytokines released by myeloma cells is the primary cause of hypercalcaemia in multiple myeloma, which typically affects individuals aged 60-70 years and presents with bone pain or pathological fractures from osteolytic lesions. Hypercalcaemia in kidney failure is associated with hyperphosphataemia and does not cause bone pain. Elevated calcitriol levels are linked to granulomatous disorders like sarcoidosis and tuberculosis, which do not typically cause bone pain. Rebound hypercalcaemia occurs after rhabdomyolysis, which usually results from a fall and long lie. Although primary hyperparathyroidism is a common cause of hypercalcaemia and can lead to bone pain or pathological fractures, it is not associated with anaemia.
Understanding Multiple Myeloma: Features and Investigations
Multiple myeloma is a type of cancer that affects the plasma cells in the bone marrow. It is most commonly found in patients aged 60-70 years. The disease is characterized by a range of symptoms, which can be remembered using the mnemonic CRABBI. These include hypercalcemia, renal damage, anemia, bleeding, bone lesions, and increased susceptibility to infection. Other features of multiple myeloma include amyloidosis, carpal tunnel syndrome, neuropathy, and hyperviscosity.
To diagnose multiple myeloma, a range of investigations are required. Blood tests can reveal anemia, renal failure, and hypercalcemia. Protein electrophoresis can detect raised levels of monoclonal IgA/IgG proteins in the serum, while bone marrow aspiration can confirm the diagnosis if the number of plasma cells is significantly raised. Imaging studies, such as whole-body MRI or X-rays, can be used to detect osteolytic lesions.
The diagnostic criteria for multiple myeloma require one major and one minor criteria or three minor criteria in an individual who has signs or symptoms of the disease. Major criteria include the presence of plasmacytoma, 30% plasma cells in a bone marrow sample, or elevated levels of M protein in the blood or urine. Minor criteria include 10% to 30% plasma cells in a bone marrow sample, minor elevations in the level of M protein in the blood or urine, osteolytic lesions, or low levels of antibodies in the blood. Understanding the features and investigations of multiple myeloma is crucial for early detection and effective treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 18
Incorrect
-
A 4-year-old boy visits the doctor complaining of occasional vomiting. He appears to be unstable while walking and his mother reports that he frequently complains of headaches. What is the probable diagnosis?
Your Answer:
Correct Answer: Medulloblastoma
Explanation:Diagnosis of a Posterior Fossa Tumor in a Young Girl
This young girl is showing symptoms of a posterior fossa tumor, which affects the cerebellar function. Ataxia, slurred speech, and double vision are common symptoms of this type of tumor. Additionally, headaches and vomiting are signs of increased intracranial pressure. The most likely diagnosis for this young girl is medulloblastoma, which is the most frequent posterior fossa tumor in children.
Craniopharyngioma is an anterior fossa tumor that arises from the floor of the pituitary, making it an unlikely diagnosis for this young girl. Acute myeloid leukemia is rare in children and has a low rate of CNS involvement, unlike acute lymphoblastic leukemia. Ataxia telangiectasia is a hereditary condition that causes degeneration of multiple spinal cord tracts, but it would not present with features of a space-occupying lesion. Becker’s muscular dystrophy is an X-linked condition that causes weakness in boys.
In summary, this young girl’s symptoms suggest a posterior fossa tumor, with medulloblastoma being the most likely diagnosis. It is important to accurately diagnose and treat this condition to ensure the best possible outcome for the patient.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 19
Incorrect
-
Which one of the following statements relating to blood transfusions is not true?
Your Answer:
Correct Answer: Patients should be transfused to achieve a target haemoglobin of 10 g/dl and a haematocrit of 30%
Explanation:As long as the patient’s Hb level is 7 or higher, transfusion may not be necessary for their management. However, this threshold may vary depending on individual factors such as co-existing medical conditions. It is important to avoid using old blood during massive transfusions as its effectiveness may be compromised.
Blood Products and Cell Saver Devices
Blood products are essential in various medical procedures, especially in cases where patients require transfusions due to anaemia or bleeding. Packed red cells, platelet-rich plasma, platelet concentrate, fresh frozen plasma, and cryoprecipitate are some of the commonly used whole blood fractions. Fresh frozen plasma is usually administered to patients with clotting deficiencies, while cryoprecipitate is a rich source of Factor VIII and fibrinogen. Cross-matching is necessary for all blood products, and cell saver devices are used to collect and re-infuse a patient’s own blood lost during surgery.
Cell saver devices come in two types, those that wash the blood cells before re-infusion and those that do not. The former is more expensive and complicated to operate but reduces the risk of re-infusing contaminated blood. The latter avoids the use of donor blood and may be acceptable to Jehovah’s witnesses. However, it is contraindicated in malignant diseases due to the risk of facilitating disease dissemination.
In some surgical patients, the use of warfarin can pose specific problems and may require the use of specialised blood products. Warfarin reversal can be achieved through the administration of vitamin K, fresh frozen plasma, or human prothrombin complex. Fresh frozen plasma is used less commonly now as a first-line warfarin reversal, and human prothrombin complex is preferred due to its rapid action. However, it should be given with vitamin K as factor 6 has a short half-life.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 20
Incorrect
-
A 7-year-old boy is diagnosed by his pediatrician with a condition characterized by a slightly low mean corpuscular volume (MCV) and a haemoglobin at the lower end of normal. Upon full investigation, it is discovered that he is missing a gene for one of his four alpha globin alleles. The doctor explains the condition to the boy and his parents, writing (aa/a-) to describe it. What is the name of this condition?
Your Answer:
Correct Answer: Silent carrier (alpha(+) heterozygous)
Explanation:There are five potential disease phenotypes of alpha thalassaemia based on the number of faulty or missing globin alleles in a patient’s genotype. These include silent carrier (alpha(+) heterozygous) for one missing allele, alpha thalassaemia trait: alpha(0) heterozygous for two missing alleles, alpha thalassaemia trait: alpha(+) homozygous for two missing alleles, haemoglobin H disease for three missing alleles, and (–/–) for four missing alleles.
Understanding Alpha-Thalassaemia
Alpha-thalassaemia is a genetic disorder that results from a deficiency of alpha chains in haemoglobin. The condition is caused by a mutation in the alpha-globulin genes located on chromosome 16. The severity of the disease depends on the number of alpha globulin alleles affected. If one or two alleles are affected, the blood picture would be hypochromic and microcytic, but the haemoglobin level would typically be normal. However, if three alleles are affected, it results in a hypochromic microcytic anaemia with splenomegaly, which is known as Hb H disease. In the case of all four alleles being affected, which is known as homozygote, it can lead to death in utero, also known as hydrops fetalis or Bart’s hydrops. Understanding the different levels of severity of alpha-thalassaemia is crucial in diagnosing and managing the condition.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 21
Incorrect
-
A 50-year-old male patient is referred to an oncologist by his GP due to a 2-month history of fever, malaise, and weight loss. Upon reviewing the patient's blood results and bone marrow biopsy report, the doctor diagnoses chronic myelogenous leukaemia (CML) and prescribes hydroxycarbamide. What is the mechanism of action of this medication?
Your Answer:
Correct Answer: Inhibition of ribonucleotide reductase
Explanation:Hydroxyurea is a medication that is used to treat various diseases, including sickle cell disease and chronic myelogenous leukaemia. It works by inhibiting ribonucleotide reductase, which reduces the production of deoxyribonucleotides. This, in turn, inhibits cell synthesis by decreasing DNA synthesis. It is important to note that hydroxyurea does not work by causing the cross-linking of DNA, which is a mechanism used by other drugs such as Cisplatin. Methotrexate works through the inhibition of dihydrofolate reductase, while Irinotecan inhibits topoisomerase I, and Cytarabine is a pyrimidine antagonist. These drugs work through different mechanisms and are not related to hydroxyurea.
Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 22
Incorrect
-
A 82-year-old female presents to her physician with a 5-month history of passing fresh red blood per rectum and tenesmus. During general examination, she appears pale and has conjunctival pallor bilaterally. Upon digital rectal examination, a firm, irregular mass is detected in the posterior aspect of the rectum. An urgent flexible sigmoidoscopy is ordered, which reveals an adenocarcinoma in the rectum below the pectinate line. In this patient, what is the lymph node region where metastatic spread is most likely to initially occur?
Your Answer:
Correct Answer: Superficial inguinal nodes
Explanation:Rectal cancer that occurs below the pectinate line is known to spread to the superficial inguinal lymph nodes. This is because the superficial inguinal nodes are responsible for draining the lymphatic system of the rectum below the pectinate line, as well as the lower limbs, scrotum/vulva.
It is important to note that the inferior mesenteric nodes are not involved in this process, as they primarily drain the hindgut structures from the transverse colon down to the rectum. Similarly, the internal iliac nodes are not involved, as they drain the inferior portion of the rectum, the anal canal superior to the pectinate line, and the pelvic viscera.
Para-aortic nodes are also not involved in the spread of rectal cancer below the pectinate line, as this portion of the rectum does not drain directly to these nodes. Instead, the testes/ovaries drain directly into the para-aortic nodes. Finally, popliteal nodes are not involved, as they only provide lymphatic drainage for the legs.
Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.
The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.
Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 23
Incorrect
-
What is the most probable cause of a macrocytic anaemia that is non-megaloblastic in nature?
Your Answer:
Correct Answer: Chronic liver disease
Explanation:The Relationship Between Chronic Diseases and Blood Cell Formation
Chronic liver disease, coeliac disease, and Crohn’s disease can all affect the formation of red blood cells in different ways. In chronic liver disease, cholesterol and lipids build up in the membrane of red blood cells, causing them to increase in size. However, DNA maturation is not impaired, so the nucleus is still ejected normally. Coeliac disease can lead to villous atrophy in the small intestine, which impairs the absorption of folic acid. Folate is necessary for DNA replication, and its deficiency can result in the formation of immature, large red cells with impaired DNA maturation. Crohn’s disease typically affects the terminal ileum, where vitamin B12 is absorbed. Vitamin B12 is important for the recycling of folate, which is essential for DNA synthesis. Without intrinsic factor, a co-factor in vitamin B12 absorption secreted by gastric parietal cells, vitamin B12 deficiency can occur. Chemotherapeutic agents that affect DNA synthesis can also lead to the formation of megaloblasts, as normal DNA maturation is impaired. Overall, these chronic diseases can have significant impacts on the formation of red blood cells and the body’s ability to produce healthy blood.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 24
Incorrect
-
A 27-year-old man with Von Willebrand's disease is scheduled for an intravenous infusion of desmopressin acetate. The medication works by triggering the release of von Willebrand factor from cells, which enhances factor VIII and the creation of the platelet plug in clotting. What substance is responsible for maintaining blood solubility and preventing platelet activation in individuals without clotting disorders?
Your Answer:
Correct Answer: Prostacyclin
Explanation:Understanding the coagulation cascade is crucial, but it’s also important to know the substances that the body secretes to maintain normal blood vessel function and prevent excessive clotting. In primary haemostasis, the formation of a platelet plug is a critical step, and several substances in the blood vessels work against platelet activation to keep the blood flowing smoothly.
Prostacyclin, which is produced from arachidonic acid, inhibits platelet activation. Nitric oxide prevents platelet adhesion to the vessel wall and also dilates blood vessels to increase blood flow. Endothelial ADPase inhibits ADP, which is a platelet activator.
Fibrinogen, a large and soluble compound, is the precursor to fibrin, which forms an insoluble mesh to trap blood cells and platelets within a clot. This is the final step of the coagulation cascade, and the clot is further strengthened by fibrin-stabilising factor. Thromboxane, produced by activated platelets, increases platelet activation and constricts blood vessels, making it another thrombotic agent. Aggregated platelets produce ADP, which further enhances platelet aggregation.
The Coagulation Cascade: Two Pathways to Fibrin Formation
The coagulation cascade is a complex process that leads to the formation of a blood clot. There are two pathways that can lead to fibrin formation: the intrinsic pathway and the extrinsic pathway. The intrinsic pathway involves components that are already present in the blood and has a minor role in clotting. It is initiated by subendothelial damage, such as collagen, which leads to the formation of the primary complex on collagen by high-molecular-weight kininogen (HMWK), prekallikrein, and Factor 12. This complex activates Factor 11, which in turn activates Factor 9. Factor 9, along with its co-factor Factor 8a, forms the tenase complex, which activates Factor 10.
The extrinsic pathway, on the other hand, requires tissue factor released by damaged tissue. This pathway is initiated by tissue damage, which leads to the binding of Factor 7 to tissue factor. This complex activates Factor 9, which works with Factor 8 to activate Factor 10. Both pathways converge at the common pathway, where activated Factor 10 causes the conversion of prothrombin to thrombin. Thrombin hydrolyses fibrinogen peptide bonds to form fibrin and also activates factor 8 to form links between fibrin molecules.
Finally, fibrinolysis occurs, which is the process of clot resorption. Plasminogen is converted to plasmin to facilitate this process. It is important to note that certain factors are involved in both pathways, such as Factor 10, and that some factors are vitamin K dependent, such as Factors 2, 7, 9, and 10. The intrinsic pathway can be assessed by measuring the activated partial thromboplastin time (APTT), while the extrinsic pathway can be assessed by measuring the prothrombin time (PT).
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 25
Incorrect
-
A 56-year-old man from Somalia is admitted to the nephrology ward due to acute-on-chronic kidney disease. He also has a known antithrombin III deficiency related to his chronic kidney disease. As part of his treatment, he is prescribed antithrombotic prophylaxis.
What is the specific factor inhibited by antithrombin III?Your Answer:
Correct Answer: Factors II, IX and X
Explanation:Understanding Antithrombin III Deficiency
Antithrombin III deficiency is a genetic condition that affects approximately 1 in 3,000 people. It is inherited in an autosomal dominant manner. This condition occurs when the body does not produce enough antithrombin III, a protein that helps to prevent blood clots by inhibiting certain clotting factors. Some patients with this deficiency have a shortage of normal antithrombin III, while others produce abnormal antithrombin III.
People with antithrombin III deficiency are at an increased risk of developing recurrent venous thromboses, which are blood clots that form in the veins. While arterial thromboses can also occur, they are less common. To manage this condition, patients may need to take warfarin for the rest of their lives to prevent thromboembolic events. During pregnancy, heparin may be used instead. Antithrombin III concentrates may also be used during surgery or childbirth.
It is important to note that patients with antithrombin III deficiency have a degree of resistance to heparin, so anti-Xa levels should be monitored carefully to ensure adequate anticoagulation. Compared to other inherited thrombophilias, antithrombin III deficiency is less common but has a higher relative risk of venous thromboembolism. Understanding this condition and its management is crucial for those affected and their healthcare providers.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 26
Incorrect
-
A 45-year-old individual undergoes a lump excision procedure and upon examination of a histological section, a clump of Reed Sternberg cells is identified by the pathologist. What is the probable diagnosis?
Your Answer:
Correct Answer: Hodgkins lymphoma
Explanation:Understanding Hodgkin’s Lymphoma: Symptoms and Risk Factors
Hodgkin’s lymphoma is a type of cancer that affects the lymphocytes and is characterized by the presence of Reed-Sternberg cells. It is most commonly seen in people in their third and seventh decades of life. There are certain risk factors that increase the likelihood of developing Hodgkin’s lymphoma, such as HIV and the Epstein-Barr virus.
The most common symptom of Hodgkin’s lymphoma is lymphadenopathy, which is the enlargement of lymph nodes. This is usually painless, non-tender, and asymmetrical, and is most commonly seen in the neck, followed by the axillary and inguinal regions. In some cases, alcohol-induced lymph node pain may be present, but this is seen in less than 10% of patients. Other symptoms of Hodgkin’s lymphoma include weight loss, pruritus, night sweats, and fever (Pel-Ebstein). A mediastinal mass may also be present, which can cause symptoms such as coughing. In some cases, Hodgkin’s lymphoma may be found incidentally on a chest x-ray.
When investigating Hodgkin’s lymphoma, normocytic anaemia may be present, which can be caused by factors such as hypersplenism, bone marrow replacement by HL, or Coombs-positive haemolytic anaemia. Eosinophilia may also be present, which is caused by the production of cytokines such as IL-5. LDH levels may also be raised.
In summary, Hodgkin’s lymphoma is a type of cancer that affects the lymphocytes and is characterized by the presence of Reed-Sternberg cells. It is most commonly seen in people in their third and seventh decades of life and is associated with risk factors such as HIV and the Epstein-Barr virus. Symptoms of Hodgkin’s lymphoma include lymphadenopathy, weight loss, pruritus, night sweats, and fever. When investigating Hodgkin’s lymphoma, normocytic anaemia, eosinophilia, and raised LDH levels may be present.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 27
Incorrect
-
Which one of the following is not a major function of the spleen in adults?
Your Answer:
Correct Answer: Storage red blood cells
Explanation:The primary function of the spleen is the removal of old or damaged red blood cells from circulation, which helps to maintain the health of the red cell mass. The other functions of the spleen are also important, but this is the main function.
The Anatomy and Function of the Spleen
The spleen is an organ located in the left upper quadrant of the abdomen. Its size can vary depending on the amount of blood it contains, but the typical adult spleen is 12.5cm long and 7.5cm wide, with a weight of 150g. The spleen is almost entirely covered by peritoneum and is separated from the 9th, 10th, and 11th ribs by both diaphragm and pleural cavity. Its shape is influenced by the state of the colon and stomach, with gastric distension causing it to resemble an orange segment and colonic distension causing it to become more tetrahedral.
The spleen has two folds of peritoneum that connect it to the posterior abdominal wall and stomach: the lienorenal ligament and gastrosplenic ligament. The lienorenal ligament contains the splenic vessels, while the short gastric and left gastroepiploic branches of the splenic artery pass through the layers of the gastrosplenic ligament. The spleen is in contact with the phrenicocolic ligament laterally.
The spleen has two main functions: filtration and immunity. It filters abnormal blood cells and foreign bodies such as bacteria, and produces properdin and tuftsin, which help target fungi and bacteria for phagocytosis. The spleen also stores 40% of platelets, reutilizes iron, and stores monocytes. Disorders of the spleen include massive splenomegaly, myelofibrosis, chronic myeloid leukemia, visceral leishmaniasis, malaria, Gaucher’s syndrome, portal hypertension, lymphoproliferative disease, haemolytic anaemia, infection, infective endocarditis, sickle-cell, thalassaemia, and rheumatoid arthritis.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 28
Incorrect
-
When administering blood transfusions, certain patients may necessitate irradiated blood components to avoid the development of transfusion-associated graft versus host disease (TA-GvHD).
What distinguishes this specific blood product from standard blood products in terms of preventing TA-GvHD?Your Answer:
Correct Answer: They are depleted in T-lymphocytes
Explanation:Irradiated blood products are utilized because they have been stripped of T-lymphocytes, which can trigger severe reactions and even death if recognized as foreign agents by the host. This special requirement is particularly necessary for patients who are vulnerable to TA-GvHD, such as those with immune deficiencies or Hodgkin’s lymphoma. On the other hand, CMV negative blood products are used to minimize the risk of CMV transmission in neonates or immunocompromised individuals. In some cases, washed blood products may be ordered for patients who experience recurrent severe allergic transfusion reactions or urticarial reactions that are not prevented by pre-transfusion antihistamine and corticosteroid administration. It is important to note that the depletion of B-lymphocytes is not a primary reason for using irradiated blood products, and there is no evidence that irradiation reduces the risk of TA-GvHD by depleting eosinophil count.
CMV Negative and Irradiated Blood Products
Blood products that are CMV negative and irradiated are used in specific situations to prevent certain complications. CMV is a virus that is transmitted through leucocytes, but as most blood products are now leucocyte depleted, CMV negative products are not often needed. However, in situations where CMV transmission is a concern, such as in granulocyte transfusions, intra-uterine transfusions, neonates up to 28 days post expected date of delivery, bone marrow/stem cell transplants, immunocompromised patients, and those with/previous Hodgkin lymphoma, CMV negative blood products are used.
On the other hand, irradiated blood products are depleted of T-lymphocytes and are used to prevent transfusion-associated graft versus host disease (TA-GVHD) caused by engraftment of viable donor T lymphocytes. Irradiated blood products are used in situations such as granulocyte transfusions, intra-uterine transfusions, neonates up to 28 days post expected date of delivery, bone marrow/stem cell transplants, and in patients who have received chemotherapy or have congenital immunodeficiencies.
In summary, CMV negative and irradiated blood products are used in specific situations to prevent complications related to CMV transmission and TA-GVHD. The use of these blood products is determined based on the patient’s medical history and condition.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 29
Incorrect
-
A 75-year-old man comes to the clinic with haemoptysis and is suspected to have lung cancer. During the examination, an enlarged supraclavicular lymph node is detected. What is the most probable feature that will be found on histological examination?
Your Answer:
Correct Answer: Increased mitoses
Explanation:Malignant cell transformation often results in an increase in mitotic activity. Metastatic cancer rarely exhibits apoptosis. Female somatic cells undergo X chromosome inactivation, resulting in the formation of Barr Bodies.
Characteristics of Malignancy in Histopathology
Histopathology is the study of tissue architecture and cellular changes in disease. In malignancy, there are several distinct characteristics that differentiate it from normal tissue or benign tumors. These features include abnormal tissue architecture, coarse chromatin, invasion of the basement membrane, abnormal mitoses, angiogenesis, de-differentiation, areas of necrosis, and nuclear pleomorphism.
Abnormal tissue architecture refers to the disorganized and irregular arrangement of cells within the tissue. Coarse chromatin refers to the appearance of the genetic material within the nucleus, which appears clumped and irregular. Invasion of the basement membrane is a hallmark of invasive malignancy, as it indicates that the cancer cells have broken through the protective layer that separates the tissue from surrounding structures. Abnormal mitoses refer to the process of cell division, which is often disrupted in cancer cells. Angiogenesis is the process by which new blood vessels are formed, which is necessary for the growth and spread of cancer cells. De-differentiation refers to the loss of specialized functions and characteristics of cells, which is common in cancer cells. Areas of necrosis refer to the death of tissue due to lack of blood supply or other factors. Finally, nuclear pleomorphism refers to the variability in size and shape of the nuclei within cancer cells.
Overall, these characteristics are important for the diagnosis and treatment of malignancy, as they help to distinguish cancer cells from normal tissue and benign tumors. By identifying these features in histopathology samples, doctors can make more accurate diagnoses and develop more effective treatment plans for patients with cancer.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 30
Incorrect
-
A 29-year-old man newly diagnosed with epilepsy visits his GP with complaints of fatigue. He has no significant medical history except for taking oral phenytoin and loratadine seasonally. He works as a construction site worker and has been experiencing a lot of stress at work due to the need to work extra shifts. During the consultation, he appears anxious and has a slim build. His blood test reveals macrocytic anaemia.
What could be the probable reason for his symptoms and blood results?Your Answer:
Correct Answer: Side effect of phenytoin
Explanation:The most probable reason for the patient’s fatigue and abnormal blood results is the side effect of phenytoin. Phenytoin is an antifolate medication that can lead to folate deficiency, resulting in macrocytic anaemia, which is evident in the patient’s blood test. Fatigue is a common symptom of anaemia, which the patient has reported.
Although lack of sleep may contribute to the patient’s tiredness, it alone cannot cause macrocytic anaemia.
Hypothyroidism can cause macrocytic anaemia and lethargy, but it is less likely to be the cause of the patient’s symptoms. The patient has no history of thyroid disorders, and his slim build and anxiety are more typical of hyperthyroidism.
Loratadine is a second-generation antihistamine that does not usually cause drowsiness.
Understanding Macrocytic Anaemia
Macrocytic anaemia is a type of anaemia that can be classified into two categories: megaloblastic and normoblastic. Megaloblastic anaemia is caused by a deficiency in vitamin B12 or folate, which leads to the production of abnormally large red blood cells in the bone marrow. This type of anaemia can also be caused by certain medications, alcohol, liver disease, hypothyroidism, pregnancy, and myelodysplasia.
On the other hand, normoblastic anaemia is caused by an increase in the number of immature red blood cells, known as reticulocytes, in the bone marrow. This can occur as a result of certain medications, such as methotrexate, or in response to other underlying medical conditions.
It is important to identify the underlying cause of macrocytic anaemia in order to provide appropriate treatment. This may involve addressing any nutritional deficiencies, managing underlying medical conditions, or adjusting medications. With proper management, most cases of macrocytic anaemia can be successfully treated.
-
This question is part of the following fields:
- Haematology And Oncology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)