-
Question 1
Correct
-
A 75-year-old man presents to the emergency department with shortness of breath. He has no known medical conditions but is known to have a 80 pack-year smoking history. He reports that he has had a cough for the past six months, bringing up white sputum. An arterial blood gas reveals the following:
pH 7.30 mmol/L (7.35-7.45)
PaO2 9.1 kPa (10.5 - 13.5)
PaCO2 6.2 kPa (5.1 - 5.6)
Bicarbonate 34 mmol/L (22 - 29)
What process is likely to occur in this patient?Your Answer: Increased secretion of erythropoietin
Explanation:Erythropoietin is produced by the kidney when there is a lack of oxygen in the body’s cells. Based on the patient’s smoking history and symptoms, it is probable that she has chronic obstructive pulmonary disorder (COPD). The type II respiratory failure and respiratory acidosis partially compensated by metabolic alkalosis suggest long-term changes. This chronic hypoxia triggers the secretion of erythropoietin, which increases the production of red blood cells, leading to polycythemia.
The accumulation of digestive enzymes in the pancreas is a characteristic of cystic fibrosis, but it is unlikely to be a new diagnosis in a 73-year-old woman. Moreover, cystic fibrosis patients typically have an isolated/compensated metabolic alkalosis on ABG, not a metabolic alkalosis attempting to correct a respiratory acidosis.
Excretion of bicarbonate is incorrect because bicarbonate would be secreted to further correct the respiratory acidosis, making this option incorrect.
Mucociliary system damage is the process that occurs in bronchiectasis, which would likely present with purulent sputum rather than white sputum. Additionally, there is no medical history to suggest the development of bronchiectasis.
Understanding Erythropoietin and its Side-Effects
Erythropoietin is a type of growth factor that stimulates the production of red blood cells. It is produced by the kidneys in response to low oxygen levels in the body. Erythropoietin is commonly used to treat anemia associated with chronic kidney disease and chemotherapy. However, it is important to note that there are potential side-effects associated with its use.
Some of the side-effects of erythropoietin include accelerated hypertension, bone aches, flu-like symptoms, skin rashes, and urticaria. In some cases, patients may develop pure red cell aplasia, which is caused by antibodies against erythropoietin. Additionally, erythropoietin can increase the risk of thrombosis due to raised PCV levels. Iron deficiency may also occur as a result of increased erythropoiesis.
There are several reasons why patients may not respond to erythropoietin therapy, including iron deficiency, inadequate dosage, concurrent infection or inflammation, hyperparathyroid bone disease, and aluminum toxicity. It is important for healthcare providers to monitor patients closely for these potential side-effects and adjust treatment as necessary.
-
This question is part of the following fields:
- Renal System
-
-
Question 2
Incorrect
-
Which one of the following changes are not typically seen in established dehydration?
Your Answer: Metabolic acidosis
Correct Answer: Decreased serum urea to creatinine ratio
Explanation:The diagnosis of dehydration can be complex, with laboratory characteristics being a key factor to consider.
Pre-Operative Fluid Management Guidelines
Proper fluid management is crucial in preparing patients for surgery. The British Consensus guidelines on IV fluid therapy for Adult Surgical patients (GIFTASUP) and NICE (CG174 December 2013) have provided recommendations for pre-operative fluid management. These guidelines suggest the use of Ringer’s lactate or Hartmann’s for resuscitation or replacement of fluids, instead of 0.9% N. Saline due to the risk of hyperchloraemic acidosis. For maintenance fluids, 4%/0.18% dextrose saline or 5% dextrose should be used. Patients should not be nil by mouth for more than two hours, and carbohydrate-rich drinks should be given 2-3 hours before surgery. Mechanical bowel preparation should be avoided, but if used, simultaneous administration of Hartmann’s or Ringer’s lactate should be considered.
In cases of excessive fluid loss from vomiting, a crystalloid with potassium replacement should be given. Hartmann’s or Ringer lactate should be given for diarrhoea, ileostomy, ileus, obstruction, or sodium losses secondary to diuretics. High-risk patients should receive fluids and inotropes, and pre or operative hypovolaemia should be detected using flow-based measurements or clinical evaluation. In cases of blood loss or infection causing hypovolaemia, a balanced crystalloid or colloid should be used until blood is available. If IV fluid resuscitation is needed, crystalloids containing sodium in the range of 130-154 mmol/l should be used, with a bolus of 500 ml over less than 15 minutes. These guidelines aim to ensure that patients are properly hydrated and prepared for surgery, reducing the risk of complications and improving outcomes.
-
This question is part of the following fields:
- Renal System
-
-
Question 3
Correct
-
A newborn with clubbed feet passes away shortly after birth due to severe respiratory distress. The mother did not receive any prenatal care. Autopsy reveals pulmonary hypoplasia.
What other clinical manifestations are likely to be present?Your Answer: Bilateral renal agenesis and oligohydramnios
Explanation:Potter sequence is a condition characterized by oligohydramnios, which can be caused by renal diseases like bilateral renal agenesis, ARPKD, and ADPKD. This condition often leads to pulmonary hypoplasia, clubbed feet, and cranial anomalies in neonates. However, oesophageal atresia, which causes polyhydramnios, is not associated with Potter sequence.
Understanding Autosomal Recessive Polycystic Kidney Disease (ARPKD)
Autosomal recessive polycystic kidney disease (ARPKD) is a rare genetic disorder that affects the kidneys and liver. Unlike the more common autosomal dominant polycystic kidney disease (ADPKD), ARPKD is caused by a defect in a gene on chromosome 6 that encodes fibrocystin, a protein essential for normal renal tubule development.
ARPKD is typically diagnosed during prenatal ultrasound or in early infancy when abdominal masses and renal failure are observed. Newborns with ARPKD may also exhibit features consistent with Potter’s syndrome due to oligohydramnios. The disease progresses rapidly, and end-stage renal failure usually develops in childhood. In addition to kidney involvement, patients with ARPKD often have liver complications such as portal and interlobular fibrosis.
Renal biopsy is a common diagnostic tool for ARPKD, which typically shows multiple cylindrical lesions at right angles to the cortical surface. Early diagnosis and management are crucial in improving outcomes for patients with ARPKD.
-
This question is part of the following fields:
- Renal System
-
-
Question 4
Correct
-
A 73-year-old man comes to the clinic with complaints of increasing nocturia, a feeble urinary stream, and some weight loss in the past few months. Upon examination, an enlarged prostate with nodules is observed, and he is promptly referred for further testing, which reveals prostate cancer cells.
During the local urology cancer multidisciplinary team meeting, his case is discussed, and the team recommends a course of bicalutamide. What is the mechanism of action of this medication?Your Answer: Androgen receptor blocker
Explanation:Bicalutamide, a non-steroidal drug, is utilized in the treatment of prostate cancer as an androgen receptor blocker. It is often used in combination with other approaches such as hormonal treatment, radiotherapy, chemotherapy, and prostatectomy. Abiraterone, on the other hand, is an androgen synthesis blocker that inhibits enzymes required for production. It is typically used for hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after anti-androgen therapy has failed. Goserelin is a gonadotrophin-releasing hormone (GnRH) agonist that ultimately downregulates sex hormones. It is initially co-prescribed with an anti-androgen due to its potential to cause an initial flare in testosterone levels. More recently, GnRH antagonists like abarelix have been used to quickly suppress testosterone without the initial flare seen with agonists. Cyproterone acetate, which exhibits progestogenic activity and steroidal and antiandrogenic effects, is another drug used in prostate cancer management but is less commonly used due to the widespread use of non-steroidal drugs like bicalutamide.
Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.
In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.
-
This question is part of the following fields:
- Renal System
-
-
Question 5
Correct
-
A 43-year-old man is admitted to the hospital after the nursing staff reported a sudden deterioration in his vital signs. Upon assessment, it is discovered that he is suffering from elevated intracranial pressure due to hydrocephalus. The medical team decides to administer mannitol, an osmotic diuretic, to alleviate the condition.
What is the primary site of action for mannitol in reducing intracranial pressure?Your Answer: Tip of the papilla of the Loop of Henle
Explanation:Where is the osmolarity highest in the nephrons of the kidneys, and why is this relevant to the effectiveness of mannitol as an osmotic diuretic?
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 6
Incorrect
-
A 6-year-old girl is undergoing a renal biopsy due to recent haematuria and proteinuria. Upon histological analysis, immune complex deposition is found within the glomeruli. Further investigation reveals the presence of IgG, IgM, and C3 within the complexes.
What is the probable diagnosis?Your Answer: Minimal change disease
Correct Answer: Post-streptococcal glomerulonephritis
Explanation:The correct diagnosis is post-streptococcal glomerulonephritis, which is a condition that commonly affects young children following an upper respiratory tract infection. Symptoms include haematuria, proteinuria, and general malaise. Biopsy samples typically show immune complex deposition of IgG, IgM, and C3, endothelial proliferation with neutrophils, and a subepithelial ‘hump’ appearance on electron microscopy. Immunofluorescence may show a granular or ‘starry sky’ appearance.
Minimal change disease is an incorrect diagnosis as it typically presents with nephrotic syndrome and does not include haematuria as a symptom. Additionally, minimal changes in glomerular structure should be seen on histology.
IgA nephropathy is also an incorrect diagnosis as it has IgA complex deposition on histology, which is different from the immune complex deposition seen in post-streptococcal glomerulonephritis.
Amyloidosis is another incorrect diagnosis as it is a cause of nephrotic syndrome and is characterised by amyloid deposition.
Post-streptococcal glomerulonephritis is a condition that typically occurs 7-14 days after an infection caused by group A beta-haemolytic Streptococcus, usually Streptococcus pyogenes. It is more common in young children and is caused by the deposition of immune complexes (IgG, IgM, and C3) in the glomeruli. Symptoms include headache, malaise, visible haematuria, proteinuria, oedema, hypertension, and oliguria. Blood tests may show a raised anti-streptolysin O titre and low C3, which confirms a recent streptococcal infection.
It is important to note that IgA nephropathy and post-streptococcal glomerulonephritis are often confused as they both can cause renal disease following an upper respiratory tract infection. Renal biopsy features of post-streptococcal glomerulonephritis include acute, diffuse proliferative glomerulonephritis with endothelial proliferation and neutrophils. Electron microscopy may show subepithelial ‘humps’ caused by lumpy immune complex deposits, while immunofluorescence may show a granular or ‘starry sky’ appearance.
Despite its severity, post-streptococcal glomerulonephritis carries a good prognosis.
-
This question is part of the following fields:
- Renal System
-
-
Question 7
Incorrect
-
A 49-year-old woman is having surgery to remove an adrenal adenoma on her left side. During the procedure, the superior adrenal artery is damaged and begins to bleed. What is the origin of this vessel?
Your Answer: Left renal artery
Correct Answer: Inferior phrenic artery
Explanation:The inferior phrenic artery gives rise to the superior adrenal artery.
Adrenal Gland Anatomy
The adrenal glands are located superomedially to the upper pole of each kidney. The right adrenal gland is posteriorly related to the diaphragm, inferiorly related to the kidney, medially related to the vena cava, and anteriorly related to the hepato-renal pouch and bare area of the liver. On the other hand, the left adrenal gland is postero-medially related to the crus of the diaphragm, inferiorly related to the pancreas and splenic vessels, and anteriorly related to the lesser sac and stomach.
The arterial supply of the adrenal glands is through the superior adrenal arteries from the inferior phrenic artery, middle adrenal arteries from the aorta, and inferior adrenal arteries from the renal arteries. The right adrenal gland drains via one central vein directly into the inferior vena cava, while the left adrenal gland drains via one central vein into the left renal vein.
In summary, the adrenal glands are small but important endocrine glands located above the kidneys. They have a unique blood supply and drainage system, and their location and relationships with other organs in the body are crucial for their proper functioning.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
Which is least likely to cause hyperuricaemia?
Your Answer: Lesch-Nyhan syndrome
Correct Answer: Amiodarone
Explanation:The drugs that cause hyperuricaemia due to reduced urate excretion can be remembered using the mnemonic Can’t leap, which stands for Ciclosporin, Alcohol, Nicotinic acid, Thiazides, Loop diuretics, Ethambutol, Aspirin, and Pyrazinamide. Additionally, decreased tubular secretion of urate can occur in patients with acidosis, such as those with diabetic ketoacidosis, ethanol or salicylate intoxication, or starvation ketosis, as the organic acids that accumulate in these conditions compete with urate for tubular secretion.
Understanding Hyperuricaemia
Hyperuricaemia is a condition characterized by elevated levels of uric acid in the blood. This can be caused by an increase in cell turnover or a decrease in the excretion of uric acid by the kidneys. While some individuals with hyperuricaemia may not experience any symptoms, it can be associated with other health conditions such as hyperlipidaemia, hypertension, and the metabolic syndrome.
There are several factors that can contribute to the development of hyperuricaemia. Increased synthesis of uric acid can occur in conditions such as Lesch-Nyhan disease, myeloproliferative disorders, and with a diet rich in purines. On the other hand, decreased excretion of uric acid can be caused by drugs like low-dose aspirin, diuretics, and pyrazinamide, as well as pre-eclampsia, alcohol consumption, renal failure, and lead exposure.
It is important to understand the underlying causes of hyperuricaemia in order to properly manage and treat the condition. Regular monitoring of uric acid levels and addressing any contributing factors can help prevent complications such as gout and kidney stones.
-
This question is part of the following fields:
- Renal System
-
-
Question 9
Incorrect
-
A fourth year medical student presents to their GP with haemoptysis following a recent mild flu-like illness. Upon urinalysis, microscopic haematuria is detected. The GP suspects Goodpasture's syndrome and refers the student to the acute medical unit at the nearby hospital. What type of hypersensitivity reaction is Goodpasture's syndrome an example of?
Your Answer: Type 3
Correct Answer: Type 2
Explanation:The Gell and Coombs classification of hypersensitivity reactions categorizes reactions into four types. Type 2 reactions involve the binding of IgG and IgM to a cell, resulting in cell death. Examples of type 2 reactions include Goodpasture syndrome, haemolytic disease of the newborn, and rheumatic fever.
Allergic rhinitis is an instance of a type 1 (immediate) reaction, which is IgE mediated. It is a hypersensitivity to a previously harmless substance.
Type 3 reactions are mediated by immune complexes, with rheumatoid arthritis being an example of a type 3 hypersensitivity reaction.
Type 4 (delayed) reactions are mediated by T lymphocytes and cause contact dermatitis.
Anti-glomerular basement membrane (GBM) disease, previously known as Goodpasture’s syndrome, is a rare form of small-vessel vasculitis that is characterized by both pulmonary haemorrhage and rapidly progressive glomerulonephritis. This condition is caused by anti-GBM antibodies against type IV collagen and is more common in men, with a bimodal age distribution. Goodpasture’s syndrome is associated with HLA DR2.
The features of this disease include pulmonary haemorrhage and rapidly progressive glomerulonephritis, which can lead to acute kidney injury. Nephritis can result in proteinuria and haematuria. Renal biopsy typically shows linear IgG deposits along the basement membrane, while transfer factor is raised secondary to pulmonary haemorrhages.
Management of anti-GBM disease involves plasma exchange (plasmapheresis), steroids, and cyclophosphamide. One of the main complications of this condition is pulmonary haemorrhage, which can be exacerbated by factors such as smoking, lower respiratory tract infection, pulmonary oedema, inhalation of hydrocarbons, and young males.
-
This question is part of the following fields:
- Renal System
-
-
Question 10
Incorrect
-
A 44-year-old woman arrives at the Emergency Department with intermittent sharp pain in her right flank and haematuria. She reports feeling slightly nauseous, but otherwise feels well. She has a medical history of hyperparathyroidism, but has never experienced these symptoms before. Her body mass index is 28kg/m² and she admits to regularly consuming takeaways. During examination, she appears restless and exhibits tenderness in her right flank.
What is the probable substance responsible for causing this patient's pain?Your Answer: Calcium phosphate
Correct Answer: Calcium oxalate
Explanation:Renal stones are predominantly made up of calcium phosphate, and individuals with renal tubular acidosis are at a higher risk of developing them. Uric acid stones, which make up only 5-10% of cases, are often associated with malignancies.
Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.
-
This question is part of the following fields:
- Renal System
-
-
Question 11
Correct
-
You assess a 40-year-old woman who underwent a renal transplant 10 months ago for focal segmental glomerulosclerosis. She is currently taking a combination of tacrolimus, mycophenolate, and prednisolone. She complains of feeling unwell for the past five days with fatigue, jaundice, and joint pain. Upon examination, you note hepatomegaly, widespread lymphadenopathy, and jaundice. What is the probable diagnosis?
Your Answer: Epstein-Barr virus
Explanation:Complications that may arise after a transplant include CMV and EBV. CMV usually presents within the first 4 weeks to 6 months post transplant, while EBV can lead to post transplant lymphoproliferative disease, which typically occurs more than 6 months after the transplant. This disorder is often linked to high doses of immunosuppressant medication.
The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.
Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.
Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.
Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.
Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.
-
This question is part of the following fields:
- Renal System
-
-
Question 12
Incorrect
-
You are asked to evaluate a 53-year-old man who has developed sudden right arm pain while in the renal ward.
According to the patient, the pain started in his right arm within a few minutes while he was resting in bed. He denies any history of trauma. He was recently admitted due to significant edema throughout his body, including periorbital edema.
Upon examination, his right arm appears pale, cool to the touch, has a capillary refill time of 6 seconds, and no palpable radial pulse. However, his brachial pulse is present.
The patient is currently undergoing daily blood tests to monitor his renal function. On admission, his urine dipstick showed heavy proteinuria. A 24-hour urine collection was performed, and the results have just been reported:
Protein 6.2g/L
What is the probable cause of his right arm pain?Your Answer: Omission of prophylactic low molecular weight heparin
Correct Answer: Antithrombin III deficiency
Explanation:When a patient with nephrotic syndrome experiences symptoms such as those presented in this scenario, the possibility of a vascular event should be considered. The acute onset of symptoms and underlying renal disease suggest the need to differentiate between arterial and venous events, such as arterial thromboembolism or dissection and venous thromboembolism.
Nephrotic syndrome increases the risk of both venous and arterial thromboses due to the loss of coagulation factors and plasminogen, leading to a hypercoagulable state. In this case, the lack of a radial pulse and cool limb suggest arterial pathology, which is more strongly associated with the loss of antithrombin III than with renal loss of protein S.
Risk factors such as Factor V Leiden deficiency, the omission of low molecular weight heparin, and immobility in hospital are not specifically relevant to this case.
Possible Complications of Nephrotic Syndrome
Nephrotic syndrome is a condition that affects the kidneys, causing them to leak protein into the urine. This can lead to a number of complications, including an increased risk of thromboembolism, which is related to the loss of antithrombin III and plasminogen in the urine. This can result in deep vein thrombosis, pulmonary embolism, and renal vein thrombosis, which can cause a sudden deterioration in renal function.
Other complications of nephrotic syndrome include hyperlipidaemia, which can increase the risk of acute coronary syndrome, stroke, and other cardiovascular problems. Chronic kidney disease is also a possible complication, as is an increased risk of infection due to the loss of urinary immunoglobulin. Additionally, hypocalcaemia can occur due to the loss of vitamin D and binding protein in the urine.
It is important for individuals with nephrotic syndrome to be aware of these potential complications and to work closely with their healthcare providers to manage their condition and prevent further complications from occurring. Regular monitoring and treatment can help to minimize the risk of these complications and improve overall health outcomes.
-
This question is part of the following fields:
- Renal System
-
-
Question 13
Correct
-
A 29-year-old female patient complains of dysuria and frequent urination for the past 3 days. She denies experiencing any vaginal discharge or heavy menstrual bleeding. Upon urine dipstick examination, leukocytes and nitrites are detected. A urine culture reveals the presence of a urease-producing bacteria identified as Proteus mirabilis. The patient is prescribed antibiotics for treatment.
What type of renal stones are patients at risk for developing with chronic and recurrent infections caused by this bacteria?Your Answer: Ammonium magnesium phosphate (struvite)
Explanation:The formation of kidney stones is a common condition that involves the accumulation of mineral deposits in the kidneys. This condition is influenced by various risk factors such as low urine volume, dry weather conditions, and acidic pH levels. It is also closely linked to hyperuricemia, which is commonly associated with gout, as well as diseases that involve high cell turnover, such as leukemia.
Renal stones can be classified into different types based on their composition. Calcium oxalate stones are the most common, accounting for 85% of all calculi. These stones are formed due to hypercalciuria, hyperoxaluria, and hypocitraturia. They are radio-opaque and may also bind with uric acid stones. Cystine stones are rare and occur due to an inherited recessive disorder of transmembrane cystine transport. Uric acid stones are formed due to purine metabolism and may precipitate when urinary pH is low. Calcium phosphate stones are associated with renal tubular acidosis and high urinary pH. Struvite stones are formed from magnesium, ammonium, and phosphate and are associated with chronic infections. The pH of urine can help determine the type of stone present, with calcium phosphate stones forming in normal to alkaline urine, uric acid stones forming in acidic urine, and struvate stones forming in alkaline urine. Cystine stones form in normal urine pH.
-
This question is part of the following fields:
- Renal System
-
-
Question 14
Incorrect
-
What is the effect of vasodilation of the efferent arterioles of the kidney?
Your Answer: Glomerular capillary hydrostatic pressure
Correct Answer: Renal blood flow
Explanation:Effects of Dilatation of Efferent Arterioles on Renal Function
Dilatation of the efferent arterioles results in a decrease in glomerular capillary hydrostatic pressure, which in turn reduces the resistance to flow through the afferent arterioles. This leads to an increase in renal blood flow, although to a lesser extent than if the afferent arterioles were dilated. However, the reduction in glomerular capillary hydrostatic pressure causes a decrease in glomerular filtration rate. The peritubular capillary oncotic pressure is influenced by the filtration fraction, which increases with a rise in GFR and no change in renal blood flow. Consequently, a greater filtration fraction would result in an increase in peritubular capillary oncotic pressure. Therefore, dilatation of the efferent arterioles causes a decrease in peritubular capillary oncotic pressure. Although urine volume is not significantly affected by this change, a sustained reduction in GFR may lead to a decrease in urine volume.
-
This question is part of the following fields:
- Renal System
-
-
Question 15
Incorrect
-
A 58-year-old man visits his primary care physician with complaints of painful urination and difficulty in emptying his bladder. He has a history of urinary tract infection and atrial fibrillation. During the examination, the physician notes an enlarged and tender prostate. The patient's vital signs are as follows: blood pressure 125/85 mmHg, pulse rate 96 beats per minute, temperature 38.9 ºC, and respiratory rate 24 breaths per minute. Which of the following organisms is most likely responsible for his symptoms?
Your Answer: Chlamydia
Correct Answer: E.coli
Explanation:The predominant cause of acute bacterial prostatitis (ABP) is E.coli, according to available data. Pneumocystis jirovecii is an opportunistic pathogen that typically causes pneumonia in immunocompromised individuals, particularly those with HIV and a CD count below 200. Treatment for this infection involves co-trimoxazole. There is no evidence of ABP being caused by tuberculosis mycobacterium in the literature.
Understanding Acute Bacterial Prostatitis
Acute bacterial prostatitis is a condition that occurs when gram-negative bacteria enter the prostate gland through the urethra. The most common pathogen that causes this condition is Escherichia coli. Risk factors for acute bacterial prostatitis include recent urinary tract infection, urogenital instrumentation, intermittent bladder catheterisation, and recent prostate biopsy.
Symptoms of acute bacterial prostatitis include pain in various areas such as the perineum, penis, rectum, or back. Obstructive voiding symptoms may also be present, along with fever and rigors. During a digital rectal examination, the prostate gland may feel tender and boggy.
To manage acute bacterial prostatitis, a 14-day course of a quinolone is currently recommended by Clinical Knowledge Summaries. It is also important to consider screening for sexually transmitted infections. Understanding the symptoms and risk factors of acute bacterial prostatitis can help individuals seek prompt medical attention and receive appropriate treatment.
-
This question is part of the following fields:
- Renal System
-
-
Question 16
Incorrect
-
A middle-aged woman expresses concerns about her baby not receiving enough blood supply. Her physician assures her that her blood volume will rise during pregnancy, resulting in a sufficient blood supply for her baby. What is the cause of this increased blood volume?
Your Answer: Increased ADH
Correct Answer: Renin-angiotensin system
Explanation:The renin-angiotensin system is responsible for increasing plasma volume by converting angiotensinogen to angiotensin 2, which causes vasoconstriction and fluid retention. While increased ADH could theoretically raise plasma volume, it typically maintains the hypothalamic plasma volume set-point and reduces micturition rate, which is not consistent with pregnancy. Conversely, decreased ADH could increase micturition and decrease plasma volume. It is important to note that decreased GFR is not a factor in increasing plasma volume during pregnancy, as it actually increases.
The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.
-
This question is part of the following fields:
- Renal System
-
-
Question 17
Correct
-
A 56-year-old man presents to the outpatient cardiology clinic complaining of fatigue and weight gain. He has been diagnosed with type II diabetes for 14 years and has been taking metformin to control his blood sugar levels. An echocardiogram reveals a globally dilated left ventricle with a reduced ejection fraction of approximately 30%, and his NT-proBNP level is 1256 (<125 pg/mL). The healthcare provider decides to initiate empagliflozin therapy due to its cardioprotective effects in patients with heart failure with reduced ejection fraction. What is the primary mechanism of action for this new medication?
Your Answer: Proximal convoluted tubule
Explanation:Glucose reabsorption within the nephron is mainly concentrated in the proximal convoluted tubule.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 18
Incorrect
-
A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract infection. She has a medical history of type 2 diabetes, hypertension, and a previous cerebrovascular accident. After three days, she experiences an altered sensorium and her urine output has been 100 ml over the past 12 hours. Her creatinine level has increased from 1 mg/dl to almost 5 mg/dl, and her blood pressure is currently 180/100 mmHg. The patient is currently taking amikacin, insulin, atorvastatin, atenolol, ramipril, and clopidogrel.
Which medication, other than ramipril, should be discontinued for this patient?Your Answer: Atorvastatin
Correct Answer: Amikacin
Explanation:The patient’s symptoms suggest that they may be experiencing acute kidney injury (AKI) as a result of a severe urinary tract infection and potential sepsis. It is important to note that ACE inhibitors such as ramipril should not be used in cases of AKI, and aminoglycosides like amikacin should also be discontinued. Beta-blockers like atenolol, on the other hand, are generally safe to use in AKI patients and may be preferred over ACE inhibitors and ARBs as antihypertensives. While statins like atorvastatin are generally safe in AKI, they can rarely cause rhabdomyolysis, which can worsen renal function and lead to renal failure. Therefore, patients who experience muscle pain should be evaluated further to rule out the possibility of rhabdomyolysis.
Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.
The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.
Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.
-
This question is part of the following fields:
- Renal System
-
-
Question 19
Incorrect
-
A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound that revealed several large cysts on her left kidney. The medical team has informed her of the potential risks associated with the procedure, such as the possibility of puncturing the primary blood vessels that supply the kidney - the renal artery and vein. At what anatomical level do these vessels enter the left kidney, considering their location?
Your Answer: T12
Correct Answer: L1
Explanation:The correct level for the hilum of the left kidney is L1, which is also where the renal artery, vein, and ureter enter the kidney. T12 is not the correct level as it is the location of the adrenal glands or upper pole of the kidney. L2 is also not correct as it refers to the hilum of the right kidney, which is slightly lower. L4 is not the correct level as both renal arteries come off above this level from the abdominal aorta.
Renal Anatomy: Understanding the Structure and Relations of the Kidneys
The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.
The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).
At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.
-
This question is part of the following fields:
- Renal System
-
-
Question 20
Incorrect
-
A 79-year-old woman is admitted with confusion and started on an IV infusion after blood tests are taken. Her admission blood results indicate dehydration and elevated potassium levels, with a subsequent increase to 5.9. Which intravenous therapy is likely causing her hyperkalaemia?
Your Answer: 0.18% saline with 4% glucose
Correct Answer: Hartmann’s
Explanation:Fluid Therapy Guidelines for Junior Doctors
Fluid therapy is a common task for junior doctors, and it is important to follow guidelines to ensure patients receive the appropriate amount of fluids. The 2013 NICE guidelines recommend 25-30 ml/kg/day of water, 1 mmol/kg/day of potassium, sodium, and chloride, and 50-100 g/day of glucose for maintenance fluids. For the first 24 hours, NICE recommends using sodium chloride 0.18% in 4% glucose with 27 mmol/l potassium. However, the amount of fluid required may vary depending on the patient’s medical history. For example, a post-op patient with significant fluid loss will require more fluid, while a patient with heart failure should receive less fluid to avoid pulmonary edema.
It is important to consider the electrolyte concentrations of plasma and the most commonly used fluids when prescribing intravenous fluids. 0.9% saline can lead to hyperchloraemic metabolic acidosis if large volumes are used. Hartmann’s solution contains potassium and should not be used in patients with hyperkalemia. By following these guidelines and considering individual patient needs, junior doctors can ensure safe and effective fluid therapy.
-
This question is part of the following fields:
- Renal System
-
-
Question 21
Incorrect
-
A 38-year-old male patient complains of a painless lump in his left testicle that he discovered during self-examination. Upon examination, a solid nodule is palpable in the left testicle, and ultrasound imaging reveals an irregular mass lesion. The patient's serum AFP and HCG levels are both normal. What is the probable diagnosis?
Your Answer: Testicular teratoma
Correct Answer: Seminoma
Explanation:A seminoma is the most probable diagnosis for this man based on his age, symptoms, and normal levels of tumour markers. Teratomas and yolk sac tumours usually result in elevated AFP and HCG levels, which are not present in seminomas. Epididymo-orchitis does not cause painless irregular mass lesions.
Overview of Testicular Disorders
Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.
Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.
-
This question is part of the following fields:
- Renal System
-
-
Question 22
Correct
-
A 94-year-old male is admitted to the emergency department after being found on the floor for several hours due to a fall. What blood test is crucial to perform in a patient who has been immobile for an extended period of time?
Your Answer: Creatine kinase
Explanation:When an elderly person remains in bed for an extended period, the pressure on their muscles can cause muscle death and rhabdomyolysis. This leads to the breakdown of skeletal muscles and the release of muscle contents into the bloodstream, resulting in hyperkalemia. This is a medical emergency that can cause cardiac arrest.
Therefore, it is crucial to test for creatine kinase in patients who have been bedridden for a long time to diagnose rhabdomyolysis. Creatine kinase levels will be elevated and may reach several tens of thousands.
To investigate the cause of the fall, other blood tests may be necessary, such as calcium to check for dehydration, sodium to detect hyponatremia, and troponin to determine if there was a cardiac ischemic event.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 23
Correct
-
A 65-year-old man is being evaluated at the liver clinic of his local hospital. The physician in charge observes that he has developed ascites due to secondary hyperaldosteronism, which is common in patients with liver cirrhosis. To counteract the elevated aldosterone levels by blocking its action in the nephron, she intends to initiate a diuretic.
Which part of the nephron is the diuretic most likely to target in this patient?Your Answer: Cortical collecting ducts
Explanation:Spironolactone is a diuretic that acts as an aldosterone antagonist on the cortical collecting ducts. It is the first-line treatment for controlling ascites in this gentleman as it blocks the secondary hyperaldosteronism underlying the condition. The main site of action for spironolactone’s diuretic effects is the cortical collecting duct.
Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.
However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.
-
This question is part of the following fields:
- Renal System
-
-
Question 24
Incorrect
-
A 25-year-old woman visits her GP, reporting excessive urination and constant thirst for the past few months. She has a history of bipolar disorder and is taking lithium. The symptoms suggest nephrogenic diabetes insipidus, which occurs when the kidneys fail to respond to vasopressin. What is the primary site in the kidney responsible for most of the water reabsorption?
Your Answer: Descending limb of loop of Henle
Correct Answer: Proximal tubule
Explanation:The proximal tubule is responsible for reabsorbing the majority of water in the kidneys. However, in cases of nephrogenic diabetes insipidus, which is often a result of taking lithium, the collecting ducts do not properly respond to antidiuretic hormone (ADH). This means that even with increased ADH, aquaporin-2 channels are not inserted in the collecting ducts, resulting in decreased water reabsorption.
The Loop of Henle and its Role in Renal Physiology
The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.
-
This question is part of the following fields:
- Renal System
-
-
Question 25
Incorrect
-
A 70-year-old woman presents to the emergency department with confusion and drowsiness, discovered by her carers at home. She has experienced three episodes of vomiting and complains of a headache. Earlier in the day, she was unable to recognise her carers and is now communicating with short, nonsensical phrases.
Based on her medical history of type 2 diabetes and stage 3 chronic kidney disease, along with the results of a CT head scan showing generalised cerebral and cerebellar oedema with narrowed ventricles and effaced sulci and cisterns, what is the most likely cause of this patient's symptoms?Your Answer: Hypophosphataemia
Correct Answer: Hyponatraemia
Explanation:Severe hyponatraemia can lead to cerebral oedema, which is likely the cause of the patient’s symptoms of confusion, headache, and drowsiness. The patient’s history of chronic kidney disease and use of thiazide diuretics increase her risk of developing hyponatraemia. Thiazides inhibit urinary dilution, leading to reduced reabsorption of NaCl in the distal renal tubules and an increased risk of hyponatraemia. In severe cases, hyponatraemia can cause a decrease in plasma osmolality, resulting in water movement into the brain and cerebral oedema.
Hypocalcaemia is not associated with cerebral oedema and can be ruled out based on the CT findings. Hypomagnesaemia is typically asymptomatic unless severe and is not associated with cerebral oedema. Hypophosphataemia is uncommon in patients with renal disease and does not present with symptoms similar to those described in the vignette. Severe hypovolemia is not indicated in this case, as there is no evidence of reduced skin turgor, dry mucous membranes, reduced urine output, or other signs of hypovolaemic shock. However, it should be noted that rapid volume correction in hypovolaemic shock can also lead to cerebral oedema.
Hyponatremia is a condition where the sodium levels in the blood are too low. If left untreated, it can lead to cerebral edema and brain herniation. Therefore, it is important to identify and treat hyponatremia promptly. The treatment plan depends on various factors such as the duration and severity of hyponatremia, symptoms, and the suspected cause. Over-rapid correction can lead to osmotic demyelination syndrome, which is a serious complication.
Initial steps in treating hyponatremia involve ruling out any errors in the test results and reviewing medications that may cause hyponatremia. For chronic hyponatremia without severe symptoms, the treatment plan varies based on the suspected cause. If it is hypovolemic, normal saline may be given as a trial. If it is euvolemic, fluid restriction and medications such as demeclocycline or vaptans may be considered. If it is hypervolemic, fluid restriction and loop diuretics or vaptans may be considered.
For acute hyponatremia with severe symptoms, patients require close monitoring in a hospital setting. Hypertonic saline is used to correct the sodium levels more quickly than in chronic cases. Vaptans, which act on V2 receptors, can be used but should be avoided in patients with hypovolemic hyponatremia and those with underlying liver disease.
It is important to avoid over-correction of severe hyponatremia as it can lead to osmotic demyelination syndrome. Symptoms of this condition include dysarthria, dysphagia, paralysis, seizures, confusion, and coma. Therefore, sodium levels should only be raised by 4 to 6 mmol/L in a 24-hour period to prevent this complication.
-
This question is part of the following fields:
- Renal System
-
-
Question 26
Correct
-
A 72-year-old man is brought to the emergency department by ambulance after collapsing at work due to dizziness. The paramedic reports that his ECG indicates hyperkalaemia. What is an ECG sign of hyperkalaemia?
Your Answer: Sinusoidal waveform
Explanation:Hyperkalaemia can be identified on an ECG by the presence of a sinusoidal waveform, as well as small or absent P waves, tall-tented T waves, and broad bizarre QRS complexes. In severe cases, the QRS complexes may even form a sinusoidal wave pattern. Asystole can also occur as a result of hyperkalaemia.
On the other hand, ECG signs of hypokalaemia include small or inverted T waves, ST segment depression, and prominent U waves. A prolonged PR interval and long QT interval may also be present, although the latter can also be a sign of hyperkalaemia. In healthy individuals, narrow QRS complexes are typically observed, whereas hyperkalaemia can cause the QRS complexes to become wide and abnormal.
Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.
There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.
It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.
-
This question is part of the following fields:
- Renal System
-
-
Question 27
Incorrect
-
A 73-year-old man visits the urology clinic due to an elevated PSA level. Despite undergoing a biopsy, there are no indications of cancer or benign prostatic hypertrophy.
The patient has a medical history of diabetes mellitus, hypertension, scrotal varicocele, renal calculi, and acute urine retention.
Out of his existing medical conditions, which one is the probable culprit for his increased PSA level?Your Answer: Scrotal varicocele
Correct Answer: Urine retention
Explanation:Urinary retention is a common cause of a raised PSA reading, as it can lead to bladder enlargement. Other conditions such as diabetes mellitus, hypertension, and renal calculi are not direct causes of elevated PSA levels.
Understanding PSA Testing for Prostate Cancer
Prostate specific antigen (PSA) is an enzyme produced by the prostate gland that has become an important marker for prostate cancer. However, there is still much debate about its usefulness as a screening tool. The NHS Prostate Cancer Risk Management Programme (PCRMP) has published guidelines on how to handle requests for PSA testing in asymptomatic men. While a recent European trial showed a reduction in prostate cancer deaths, there is also a high risk of over-diagnosis and over-treatment. As a result, the National Screening Committee has decided not to introduce a prostate cancer screening programme yet, but rather allow men to make an informed choice.
PSA levels may be raised by various factors, including benign prostatic hyperplasia, prostatitis, ejaculation, vigorous exercise, urinary retention, and instrumentation of the urinary tract. However, PSA levels are not always a reliable indicator of prostate cancer. For example, around 20% of men with prostate cancer have a normal PSA level, while around 33% of men with a PSA level of 4-10 ng/ml will be found to have prostate cancer. To add greater meaning to a PSA level, age-adjusted upper limits and monitoring changes in PSA level over time (PSA velocity or PSA doubling time) are used. The PCRMP recommends age-adjusted upper limits for PSA levels, with a limit of 3.0 ng/ml for men aged 50-59 years, 4.0 ng/ml for men aged 60-69 years, and 5.0 ng/ml for men over 70 years old.
-
This question is part of the following fields:
- Renal System
-
-
Question 28
Incorrect
-
A 65-year-old man comes to the clinic for a medication review. He reports no negative effects and wishes to continue his current treatment. After conducting a blood test, you notice that his serum potassium level is slightly elevated. Which of the following frequently prescribed drugs is linked to an increase in serum potassium?
Your Answer: Furosemide
Correct Answer: Ramipril
Explanation:Ramipril is the correct answer. Before starting ACE inhibitor therapy, a baseline potassium level is measured because these drugs can cause an increase in serum potassium.
Loop diuretics like furosemide can cause hypokalaemia and hyponatraemia.
Salbutamol does not lead to hyperkalaemia and can actually be used to lower serum potassium levels in emergency situations.
Taking paracetamol within recommended doses does not affect potassium levels.
Drugs and their Effects on Potassium Levels
Many commonly prescribed drugs have the potential to alter the levels of potassium in the bloodstream. Some drugs can decrease the amount of potassium in the blood, while others can increase it.
Drugs that can decrease serum potassium levels include thiazide and loop diuretics, as well as acetazolamide. On the other hand, drugs that can increase serum potassium levels include ACE inhibitors, angiotensin-2 receptor blockers, spironolactone, and potassium-sparing diuretics like amiloride and triamterene. Additionally, taking potassium supplements like Sando-K or Slow-K can also increase potassium levels in the blood.
It’s important to note that the above list does not include drugs used to temporarily decrease serum potassium levels for patients with hyperkalaemia, such as salbutamol or calcium resonium.
Overall, it’s crucial for healthcare providers to be aware of the potential effects of medications on potassium levels and to monitor patients accordingly.
-
This question is part of the following fields:
- Renal System
-
-
Question 29
Correct
-
A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent urinary tract infections. The paediatric consultant on CAU orders a group of investigations to find out the underlying cause.
What are the risk factors for UTIs in children, as the paediatrics trainee has asked the medical student?Your Answer: Posterior urethral valves
Explanation:The risk of urinary tract infection is higher in individuals with posterior urethral valves.
Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.
-
This question is part of the following fields:
- Renal System
-
-
Question 30
Incorrect
-
A 70-year-old woman with bilateral pitting edema that extends above the knee is prescribed furosemide. What is the mechanism of action of this medication?
Your Answer: Inhibits the sodium-chloride transporter
Correct Answer: Inhibits the sodium-potassium-chloride cotransporter
Explanation:Furosemide is a type of loop diuretic that works by inhibiting the cotransporter in the thick ascending loop of Henle, which prevents the reabsorption of sodium, chloride, and potassium. This results in significant diuresis.
Mannitol is an osmotic diuretic that is commonly used to reduce intracranial pressure after a head injury. Spironolactone is an aldosterone antagonist, while bendroflumethiazide acts on the sodium-chloride transporter in the distal convoluted tubule. Acetazolamide is a carbonic anhydrase inhibitor that is often prescribed for the treatment of acute angle closure glaucoma.
Diuretic drugs are classified into three major categories based on the location where they inhibit sodium reabsorption. Loop diuretics act on the thick ascending loop of Henle, thiazide diuretics on the distal tubule and connecting segment, and potassium sparing diuretics on the aldosterone-sensitive principal cells in the cortical collecting tubule. Sodium is reabsorbed in the kidney through Na+/K+ ATPase pumps located on the basolateral membrane, which return reabsorbed sodium to the circulation and maintain low intracellular sodium levels. This ensures a constant concentration gradient.
The physiological effects of commonly used diuretics vary based on their site of action. furosemide, a loop diuretic, inhibits the Na+/K+/2Cl- carrier in the ascending limb of the loop of Henle and can result in up to 25% of filtered sodium being excreted. Thiazide diuretics, which act on the distal tubule and connecting segment, inhibit the Na+Cl- carrier and typically result in between 3 and 5% of filtered sodium being excreted. Finally, spironolactone, a potassium sparing diuretic, inhibits the Na+/K+ ATPase pump in the cortical collecting tubule and typically results in between 1 and 2% of filtered sodium being excreted.
-
This question is part of the following fields:
- Renal System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)