00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What evidence indicates a diagnosis of dementia pugilistica? ...

    Incorrect

    • What evidence indicates a diagnosis of dementia pugilistica?

      Your Answer: A history of tuberculosis

      Correct Answer: A history of recurrent head injury

      Explanation:

      Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma

      Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.

      Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.

      Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.

      While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.

    • This question is part of the following fields:

      • Neurosciences
      12.2
      Seconds
  • Question 2 - In which region of the brain is Broca's area located? ...

    Correct

    • In which region of the brain is Broca's area located?

      Your Answer: Brodmann areas 44 and 45

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      2.6
      Seconds
  • Question 3 - Which component is excluded from the Papez circuit? ...

    Incorrect

    • Which component is excluded from the Papez circuit?

      Your Answer: Entorhinal cortex

      Correct Answer: Caudate nucleus

      Explanation:

      The basal ganglia includes the caudate nucleus.

      The Papez Circuit: A Neural Pathway for Emotion

      James Papez was the first to describe a neural pathway in the brain that mediates the process of emotion. This pathway is known as the ‘Papez circuit’ and is located on the medial surface of the brain. It is bilateral, symmetrical, and links the cortex to the hypothalamus.

      According to Papez, information about emotion passes through several structures in the brain, including the hippocampus, the Mammillary bodies of the hypothalamus, the anterior nucleus of the thalamus, the cingular cortex, and the entorhinal cortex. Finally, the information passes through the hippocampus again, completing the circuit.

      The Papez circuit was one of the first descriptions of the limbic system, which is responsible for regulating emotions, motivation, and memory. Understanding the Papez circuit and the limbic system has important implications for understanding and treating emotional disorders such as anxiety and depression.

    • This question is part of the following fields:

      • Neurosciences
      8.7
      Seconds
  • Question 4 - In which region of the monkey's cortex were mirror neurons initially identified? ...

    Incorrect

    • In which region of the monkey's cortex were mirror neurons initially identified?

      Your Answer: Prefrontal cortex

      Correct Answer: Premotor cortex

      Explanation:

      Visuomotor neurons known as mirror neurons are situated in the premotor cortex. These neurons were initially identified in a specific region of the premotor cortex in monkeys called area F5, but have since been observed in the inferior parietal lobule as well (Rizzolatti 2001).

      Mirror Neurons: A Model for Imitation Learning

      Mirror neurons are a unique type of visuomotor neurons that were first identified in the premotor cortex of monkeys in area F5. These neurons fire not only when the monkey performs a specific action but also when it observes another individual, whether it is a monkey of a human, performing a similar action. This discovery has led to the development of a model for understanding imitation learning.

      Mirror neurons offer a fascinating insight into how humans and animals learn by imitation. They provide a neural mechanism that allows individuals to understand the actions of others and to replicate those actions themselves. This process is essential for social learning, as it enables individuals to learn from others and to adapt to their environment.

      The discovery of mirror neurons has also led to new research in the field of neuroscience, as scientists seek to understand how these neurons work and how they can be used to improve our understanding of human behavior. As we continue to learn more about mirror neurons, we may be able to develop new therapies for individuals with social and communication disorders, such as autism.

      Overall, mirror neurons are a fascinating area of research that has the potential to revolutionize our understanding of human behavior and learning. By studying these neurons, we may be able to unlock new insights into how we learn, communicate, and interact with others.

    • This question is part of the following fields:

      • Neurosciences
      8.2
      Seconds
  • Question 5 - Anomic aphasia is most likely to occur due to a lesion in which...

    Incorrect

    • Anomic aphasia is most likely to occur due to a lesion in which area?

      Your Answer: Precentral gyrus

      Correct Answer: Angular gyrus

      Explanation:

      The parahippocampal gyrus is located surrounding the hippocampus and is involved in memory processing. Asymmetry in this area has also been observed in individuals with schizophrenia.

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      4.5
      Seconds
  • Question 6 - What structure's reduced asymmetry has been linked to schizophrenia? ...

    Correct

    • What structure's reduced asymmetry has been linked to schizophrenia?

      Your Answer: Planum temporale

      Explanation:

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      10.1
      Seconds
  • Question 7 - A senior citizen with bipolar disorder complains of nausea and vomiting, confusion, and...

    Incorrect

    • A senior citizen with bipolar disorder complains of nausea and vomiting, confusion, and difficulty with coordination. You suspect lithium toxicity despite a normal level of lithium in the blood. What tests can be done to confirm this?

      Your Answer: Lumbar puncture

      Correct Answer: EEG

      Explanation:

      Confirmation of lithium toxicity cannot be solely based on a normal serum lithium level. EEG is a more reliable method, as it can detect diffuse slowing and triphasic waves, which are characteristic features of lithium toxicity. CT and MRI brain scans are not helpful in confirming lithium toxicity. While ECG may show changes such as arrhythmias and flattened of inverted T-waves, they are not sufficient to confirm lithium toxicity. A lumbar puncture can rule out an infectious cause for the symptoms but cannot confirm lithium toxicity.

    • This question is part of the following fields:

      • Neurosciences
      13.7
      Seconds
  • Question 8 - A 35 year old woman has been referred to your clinic with suspected...

    Correct

    • A 35 year old woman has been referred to your clinic with suspected functional paralysis of the left leg. When you ask her to raise her unaffected leg while lying flat on the bed, you feel her pushing down on your hand as you place it under her affected leg.
      What sign has been demonstrated?

      Your Answer: Hoover's sign

      Explanation:

      – A Battle’s sign is a physical indication of a basal skull fracture.
      – Babinski’s sign is a clinical sign that suggests an upper motor neuron lesion.
      – Kernig’s sign is a clinical sign that indicates meningeal irritation.
      – Russell’s sign is characterized by scarring on the knuckles and back of the hand, and it is indicative of repeated induced vomiting.

      Hoover’s Sign for Differentiating Organic and Functional Weakness

      Functional weakness refers to weakness that is inconsistent with any identifiable neurological disease and may be diagnosed as conversion disorder of dissociative motor disorder. To differentiate between organic and functional weakness of pyramidal origin, Dr. Charles Franklin Hoover described Hoover’s sign over 100 years ago.

      This test is typically performed on the lower limbs and is useful when the nature of hemiparesis is uncertain. When a person with organic hemiparesis is asked to flex the hip of their normal leg against resistance, they will not exert pressure on the examiner’s hand placed under the heel on the affected side. However, in hysterical weakness, the examiner will feel increased pressure on their hand. Hoover’s sign is a valuable tool for distinguishing between organic and functional weakness.

    • This question is part of the following fields:

      • Neurosciences
      18.4
      Seconds
  • Question 9 - What is a true statement about the cerebellum? ...

    Incorrect

    • What is a true statement about the cerebellum?

      Your Answer: It is separated from the brainstem by the tentorium cerebelli

      Correct Answer: The vestibulocerebellum controls balance and spatial orientation

      Explanation:

      The Cerebellum: Anatomy and Function

      The cerebellum is a part of the brain that consists of two hemispheres and a median vermis. It is separated from the cerebral hemispheres by the tentorium cerebelli and connected to the brain stem by the cerebellar peduncles. Anatomically, it is divided into three lobes: the flocculonodular lobe, anterior lobe, and posterior lobe. Functionally, it is divided into three regions: the vestibulocerebellum, spinocerebellum, and cerebrocerebellum.

      The vestibulocerebellum, located in the flocculonodular lobe, is responsible for balance and spatial orientation. The spinocerebellum, located in the medial section of the anterior and posterior lobes, is involved in fine-tuned body movements. The cerebrocerebellum, located in the lateral section of the anterior and posterior lobes, is involved in planning movement and the conscious assessment of movement.

      Overall, the cerebellum plays a crucial role in motor coordination and control. Its different regions and lobes work together to ensure smooth and precise movements of the body.

    • This question is part of the following fields:

      • Neurosciences
      10.1
      Seconds
  • Question 10 - An elevation in Brain-derived neurotrophic factor levels in cortical regions compared to healthy...

    Incorrect

    • An elevation in Brain-derived neurotrophic factor levels in cortical regions compared to healthy individuals has been observed for which of the following disorders?

      Your Answer: Autism

      Correct Answer: Schizophrenia

      Explanation:

      Neurotrophins: Crucial for Neuronal Growth and Development

      Neurotrophins are essential for the growth and development of neurons. However, disturbances in neurotrophic factors may contribute to some neurodevelopmental aspects of schizophrenia and major depression.

      Studies have shown that patients with schizophrenia have increased concentrations of Brain-derived neurotrophic factor (BDNF) in cortical areas, but decreased levels in the hippocampus compared to controls. Additionally, patients with schizophrenia have lower concentrations of neurotrophin-3 in frontal and parietal areas than controls.

      These findings suggest that neurotrophins play a critical role in the pathophysiology of schizophrenia and major depression. Further research is needed to fully understand the mechanisms underlying these disturbances in neurotrophic factors.

    • This question is part of the following fields:

      • Neurosciences
      15.3
      Seconds
  • Question 11 - If a patient suspected of having a stroke presents with a deviation of...

    Correct

    • If a patient suspected of having a stroke presents with a deviation of the tongue towards the right, which nerve is likely to be impacted?

      Your Answer: Right hypoglossal nerve

      Explanation:

      The hypoglossal nerve (nerve XII) is responsible for controlling the motor functions of the tongue and the muscles surrounding the hyoid bone. As a result, when there is a lesion on the right side, the tongue will tend to deviate towards that side. It is important to note that the hypoglossal nerve is purely a motor nerve and does not have any sensory component.

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      7.2
      Seconds
  • Question 12 - Which artery blockage is most likely to cause Broca's aphasia? ...

    Incorrect

    • Which artery blockage is most likely to cause Broca's aphasia?

      Your Answer: Anterior cerebral

      Correct Answer: Middle cerebral

      Explanation:

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      4.8
      Seconds
  • Question 13 - Which type of ion channel is activated by binding of a specific molecule...

    Incorrect

    • Which type of ion channel is activated by binding of a specific molecule (ligand)?

      Your Answer: 5HT-2

      Correct Answer: 5HT-3

      Explanation:

      All serotonin receptors, except for 5-HT3, are coupled with G proteins instead of being ligand gated ion channels.

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      4.5
      Seconds
  • Question 14 - What is the definition of sleep latency? ...

    Incorrect

    • What is the definition of sleep latency?

      Your Answer: The amount of time a person is asleep while in bed

      Correct Answer: The time taken to fall asleep after going to bed

      Explanation:

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      10.4
      Seconds
  • Question 15 - In which area of the skull is the structure located in the anterior...

    Correct

    • In which area of the skull is the structure located in the anterior cranial fossa?

      Your Answer: Cribriform plate

      Explanation:

      The ethmoid bone contains the cribriform plate, which acts as a barrier between the nasal cavity and the brain.

      Cranial Fossae and Foramina

      The cranium is divided into three regions known as fossae, each housing different cranial lobes. The anterior cranial fossa contains the frontal lobes and includes the frontal and ethmoid bones, as well as the lesser wing of the sphenoid. The middle cranial fossa contains the temporal lobes and includes the greater wing of the sphenoid, sella turcica, and most of the temporal bones. The posterior cranial fossa contains the occipital lobes, cerebellum, and medulla and includes the occipital bone.

      There are several foramina in the skull that allow for the passage of various structures. The most important foramina likely to appear in exams are listed below:

      – Foramen spinosum: located in the middle fossa and allows for the passage of the middle meningeal artery.
      – Foramen ovale: located in the middle fossa and allows for the passage of the mandibular division of the trigeminal nerve.
      – Foramen lacerum: located in the middle fossa and allows for the passage of the small meningeal branches of the ascending pharyngeal artery and emissary veins from the cavernous sinus.
      – Foramen magnum: located in the posterior fossa and allows for the passage of the spinal cord.
      – Jugular foramen: located in the posterior fossa and allows for the passage of cranial nerves IX, X, and XI.

      Understanding the location and function of these foramina is essential for medical professionals, as they play a crucial role in the diagnosis and treatment of various neurological conditions.

    • This question is part of the following fields:

      • Neurosciences
      8.8
      Seconds
  • Question 16 - Which pathway's dopamine blockade is responsible for the antipsychotic-induced extrapyramidal side effects? ...

    Incorrect

    • Which pathway's dopamine blockade is responsible for the antipsychotic-induced extrapyramidal side effects?

      Your Answer: Mesocortical

      Correct Answer: Nigrostriatal

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      5.1
      Seconds
  • Question 17 - Which cranial nerve reflex is most likely to be impacted by a vagus...

    Correct

    • Which cranial nerve reflex is most likely to be impacted by a vagus nerve lesion?

      Your Answer: Gag

      Explanation:

      Cranial Nerve Reflexes

      When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:

      – Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Jaw jerk: involves the trigeminal nerve (sensory and motor).
      – Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
      – Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).

      Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.

    • This question is part of the following fields:

      • Neurosciences
      5.8
      Seconds
  • Question 18 - Where do macroscopic abnormalities typically appear in the brains of individuals with dyslexia?...

    Incorrect

    • Where do macroscopic abnormalities typically appear in the brains of individuals with dyslexia?

      Your Answer: Anterior hypothalamus

      Correct Answer: Planum temporale

      Explanation:

      Brain Abnormalities in Dyslexia

      Individuals with dyslexia often exhibit a loss of the typical left-right asymmetry at the planum temporale in the temporal lobe. However, this abnormality can also be observed in the brains of individuals without dyslexia, making it a sensitive but not specific marker for the disorder. None of the other brain regions mentioned are associated with dyslexia. The pineal gland, located in the epithalamus, secretes melatonin. The third interstitial nucleus of the anterior hypothalamus is larger in heterosexual men compared to homosexual men and heterosexual women. The medulla oblongata is located in the brainstem, and the lateral geniculate nucleus in the thalamus relays visual information from the retina to the occipital cortex.

    • This question is part of the following fields:

      • Neurosciences
      10.4
      Seconds
  • Question 19 - The patient, a 25-year-old male who was recently started on risperidone, presents to...

    Correct

    • The patient, a 25-year-old male who was recently started on risperidone, presents to the clinic with complaints of decreased libido and gynecomastia. These symptoms may be attributed to the blockade of D-2 receptors in which of the following pathways?

      Your Answer: Tuberoinfundibular

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      6
      Seconds
  • Question 20 - In addition to alcohol, what other substance is metabolized by aldehyde dehydrogenase? ...

    Correct

    • In addition to alcohol, what other substance is metabolized by aldehyde dehydrogenase?

      Your Answer: Serotonin

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      13.1
      Seconds
  • Question 21 - What is a pathological characteristic observed in individuals with Alzheimer's disease? ...

    Correct

    • What is a pathological characteristic observed in individuals with Alzheimer's disease?

      Your Answer: Hyperphosphorylated tau

      Explanation:

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      6.6
      Seconds
  • Question 22 - What indicators would suggest the existence of a lower motor neuron lesion rather...

    Correct

    • What indicators would suggest the existence of a lower motor neuron lesion rather than an upper motor neuron lesion?

      Your Answer: Fasciculations

      Explanation:

      Motor Neuron Lesions

      Signs of an upper motor neuron lesion include weakness, increased reflexes, increased tone (spasticity), mild atrophy, an upgoing plantar response (Babinski reflex), and clonus. On the other hand, signs of a lower motor neuron lesion include atrophy, weakness, fasciculations, decreased reflexes, and decreased tone. It is important to differentiate between the two types of lesions as they have different underlying causes and require different treatment approaches. A thorough neurological examination can help identify the location and extent of the lesion, which can guide further diagnostic testing and management.

    • This question is part of the following fields:

      • Neurosciences
      10.9
      Seconds
  • Question 23 - What characteristic is unique to neurons and not present in other types of...

    Correct

    • What characteristic is unique to neurons and not present in other types of cells?

      Your Answer: Nissl substance

      Explanation:

      Nissl bodies are sizable granules present in neurons that contain rough endoplasmic reticulum and free ribosomes, where protein synthesis occurs. These structures were named after Franz Nissl and exhibit a distinctive purple-blue hue when exposed to Cresyl violet solution, although the reason for this selective staining remains unknown.

      Melanin

      Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.

    • This question is part of the following fields:

      • Neurosciences
      12
      Seconds
  • Question 24 - What is the name of the bundle of association fibers that connects the...

    Incorrect

    • What is the name of the bundle of association fibers that connects the frontal and temporal lobes and is crucial for language repetition?

      Your Answer: Cingulum

      Correct Answer: Arcuate fasciculus

      Explanation:

      Association fibres refer to axons that link different cortical areas within the same hemisphere of the brain. The middle longitudinal fasciculus is a white matter tract that connects the inferior parietal lobule to the temporal cortices. The uncinate fasciculus is a relatively short pathway that connects the anterior temporal areas to the inferior frontal areas. The inferior longitudinal fasciculus and inferior fronto-occipital fasciculus fibre pathways are believed to connect the occipital cortices to the anterior temporal and inferior frontal cortices (note that the inferior fronto-occipital fasciculus pathway is also known as the inferior occipitofrontal fasciculus). The cingulum is a group of white matter fibres that extend from the cingulate gyrus to the entorhinal cortex, facilitating communication between different parts of the limbic system.

      Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.

    • This question is part of the following fields:

      • Neurosciences
      9.8
      Seconds
  • Question 25 - Which structure is most commonly observed to have pallor in individuals with Lewy...

    Correct

    • Which structure is most commonly observed to have pallor in individuals with Lewy body dementia?

      Your Answer: Substantia nigra

      Explanation:

      Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.

      Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.

      In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.

      Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.

    • This question is part of the following fields:

      • Neurosciences
      6.4
      Seconds
  • Question 26 - What is a correct statement about the pathology of Lewy body dementia? ...

    Incorrect

    • What is a correct statement about the pathology of Lewy body dementia?

      Your Answer: Lewy bodies are extracellular deposits of alpha synuclein

      Correct Answer: There is a loss of dopaminergic neurons

      Explanation:

      Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.

      Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.

      In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.

      Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.

    • This question is part of the following fields:

      • Neurosciences
      8.3
      Seconds
  • Question 27 - Through which opening in the skull does the cranial nerve exit, which is...

    Correct

    • Through which opening in the skull does the cranial nerve exit, which is known as the internal auditory canal?

      Your Answer: Vestibulocochlear (VIII)

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      5.6
      Seconds
  • Question 28 - What waveform represents a frequency range of 12-30Hz? ...

    Correct

    • What waveform represents a frequency range of 12-30Hz?

      Your Answer: Beta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      4.1
      Seconds
  • Question 29 - What is a characteristic that is shared by both upper and lower motor...

    Correct

    • What is a characteristic that is shared by both upper and lower motor neuron lesions?

      Your Answer: Weakness

      Explanation:

      Motor Neuron Lesions

      Signs of an upper motor neuron lesion include weakness, increased reflexes, increased tone (spasticity), mild atrophy, an upgoing plantar response (Babinski reflex), and clonus. On the other hand, signs of a lower motor neuron lesion include atrophy, weakness, fasciculations, decreased reflexes, and decreased tone. It is important to differentiate between the two types of lesions as they have different underlying causes and require different treatment approaches. A thorough neurological examination can help identify the location and extent of the lesion, which can guide further diagnostic testing and management.

    • This question is part of the following fields:

      • Neurosciences
      4.8
      Seconds
  • Question 30 - When activated, which type of receptor increases the permeability of a plasma membrane...

    Correct

    • When activated, which type of receptor increases the permeability of a plasma membrane to chloride ions?

      Your Answer: GABA-A

      Explanation:

      GABA-A is the sole ionotropic receptor among the options provided. Its function involves the selective conduction of chloride ions across the cell membrane upon activation by GABA, leading to hyperpolarization of the neuron.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      4.6
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurosciences (16/30) 53%
Passmed