00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which one of the following is not a branch of the subclavian artery?...

    Incorrect

    • Which one of the following is not a branch of the subclavian artery?

      Your Answer:

      Correct Answer: Superior thyroid artery

      Explanation:

      The branches of the subclavian artery can be remembered using the mnemonic VIT C & D, which stands for Vertebral artery, Internal thoracic, Thyrocervical trunk, Costalcervical trunk, and Dorsal scapular. It is important to note that the Superior thyroid artery is actually a branch of the external carotid artery.

      The Subclavian Artery: Origin, Path, and Branches

      The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.

      From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.

      The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.

      In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 2 - A 67-year-old woman has been prescribed amiodarone. She has been advised to take...

    Incorrect

    • A 67-year-old woman has been prescribed amiodarone. She has been advised to take higher doses initially and then switch to a lower maintenance dose for long-term use.

      What is the rationale behind this initial dosing regimen?

      Your Answer:

      Correct Answer: Slow metabolism of amiodarone due to extensive lipid binding

      Explanation:

      A loading dose is necessary for amiodarone to achieve therapeutic levels quickly before transitioning to a maintenance dose. This is because a 50mg once daily maintenance dose would take a long time to reach the required 1000mg for therapeutic effect. The fast metabolism of amiodarone due to extensive protein binding, extensive hepatic P450 breakdown, and slow absorption via the enteral route are not the reasons for a loading regime.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 3 - A 67-year-old man comes to the emergency department with concerns of pain in...

    Incorrect

    • A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?

      Your Answer:

      Correct Answer: Anterior tibial

      Explanation:

      The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 4 - In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly...

    Incorrect

    • In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.

      What ion influx causes this rapid depolarisation?

      Your Answer:

      Correct Answer: Na+

      Explanation:

      Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 5 - A 75-year-old woman complains of increasing shortness of breath in the past few...

    Incorrect

    • A 75-year-old woman complains of increasing shortness of breath in the past few months, especially when lying down at night. She has a history of type 2 diabetes and high blood pressure, which is managed with ramipril. She smokes 15 cigarettes per day. Her heart rate is 76 bpm, blood pressure is 160/95 mmHg, and oxygen saturation is 94% on room air. An ECG reveals sinus rhythm and left ventricular hypertrophy. On physical examination, there are no heart murmurs, but there is wheezing throughout the chest and coarse crackles at both bases. She has pitting edema in both ankles. Her troponin T level is 0.01 (normal range <0.02). What is the diagnosis for this patient?

      Your Answer:

      Correct Answer: Biventricular failure

      Explanation:

      Diagnosis and Assessment of Biventricular Failure

      This patient is exhibiting symptoms of both peripheral and pulmonary edema, indicating biventricular failure. The ECG shows left ventricular hypertrophy, which is likely due to her long-standing hypertension. While she is at an increased risk for a myocardial infarction as a diabetic and smoker, her low troponin T levels suggest that this is not the immediate cause of her symptoms. However, it is important to rule out acute coronary syndromes in diabetics, as they may not experience pain.

      Mitral stenosis, if present, would be accompanied by a diastolic murmur and left atrial hypertrophy. In severe cases, back-pressure can lead to pulmonary edema. Overall, a thorough assessment and diagnosis of biventricular failure is crucial in determining the appropriate treatment plan for this patient.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 6 - A patient with chronic heart failure with reduced ejection fraction has been prescribed...

    Incorrect

    • A patient with chronic heart failure with reduced ejection fraction has been prescribed a new medication as part of their drug regimen. This drug aims to improve myocardial contractility, but it is also associated with various side effects, such as arrhythmias. Its mechanism of action is blocking a protein with an important role in the resting potential of cardiac muscle cells.

      What protein is the drug targeting?

      Your Answer:

      Correct Answer: Na+/K+ ATPases

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 7 - A 70-year-old man presents to the cardiology clinic with complaints of worsening shortness...

    Incorrect

    • A 70-year-old man presents to the cardiology clinic with complaints of worsening shortness of breath and leg swelling over the past 3 months. Upon examination, there is pitting edema to his thighs bilaterally with palpable sacral edema. Bibasal crackles are heard upon auscultation. What medication can be prescribed to improve the prognosis of the underlying condition?

      Your Answer:

      Correct Answer: Ramipril

      Explanation:

      Ramipril is the correct medication for this patient with likely chronic heart failure. It is one of the few drugs that has been shown to improve the overall prognosis of heart failure, along with beta-blockers and aldosterone antagonists. Aspirin, digoxin, and furosemide are commonly used in the management of heart failure but do not offer prognostic benefit.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - A 75-year-old man presents to the emergency department with chest pain and shortness...

    Incorrect

    • A 75-year-old man presents to the emergency department with chest pain and shortness of breath while gardening. He reports that the pain has subsided and is able to provide a detailed medical history. He mentions feeling breathless while gardening and walking in the park, and occasionally feeling like he might faint. He has a history of hypertension, is a retired construction worker, and a non-smoker. On examination, the doctor detects a crescendo-decrescendo systolic ejection murmur. The ECG shows no ST changes and the troponin test is negative. What is the underlying pathology responsible for this man's condition?

      Your Answer:

      Correct Answer: Old-age related calcification of the aortic valves

      Explanation:

      The patient’s symptoms suggest an ischemic episode of the myocardium, which could indicate an acute coronary syndrome (ACS). However, the troponin test and ECG results were negative, and there are no known risk factors for coronary artery disease. Instead, the presence of a crescendo-decrescendo systolic ejection murmur and the triad of breathlessness, chest pain, and syncope suggest a likely diagnosis of aortic stenosis, which is commonly caused by calcification of the aortic valves in older adults or abnormal valves in younger individuals.

      Arteriolosclerosis in severe systemic hypertension leads to hyperplastic proliferation of smooth muscle cells in the arterial walls, resulting in an onion-skin appearance. This is distinct from hyaline arteriolosclerosis, which is associated with diabetes mellitus and hypertension. Atherosclerosis, characterized by fibrous plaque formation in the coronary arteries, can lead to cardiac ischemia and myocyte death if the plaque ruptures and forms a thrombus.

      After a myocardial infarction, the rupture of the papillary muscle can cause mitral regurgitation, which is most likely to occur between days 2 and 7 as macrophages begin to digest necrotic myocardial tissue. The posteromedial papillary muscle is particularly at risk due to its single blood supply from the posterior descending artery.

      Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.

      Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A man in his 50s arrives at the emergency department with bleeding following...

    Incorrect

    • A man in his 50s arrives at the emergency department with bleeding following a car accident. Despite significant blood loss, his blood pressure has remained stable. What can be said about the receptors responsible for regulating his blood pressure?

      Your Answer:

      Correct Answer: Baroreceptors are stimulated by arterial stretch

      Explanation:

      Arterial stretch stimulates baroreceptors, which are located at the aortic arch and carotid sinus. The baroreceptor reflex acts on the medulla to regulate parasympathetic and sympathetic activity. When baroreceptors are more stimulated, there is an increase in parasympathetic discharge to the SA node and a decrease in sympathetic discharge. Conversely, reduced stimulation of baroreceptors leads to decreased parasympathetic discharge and increased sympathetic discharge. Baroreceptors are always active, and changes in arterial stretch can either increase or decrease their level of stimulation.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A 22-year-old male arrives at the emergency department complaining of palpitations and feeling...

    Incorrect

    • A 22-year-old male arrives at the emergency department complaining of palpitations and feeling lightheaded. The electrocardiogram reveals supraventricular tachycardia, and the registrar administers adenosine to try and correct the abnormal rhythm.

      What is the mechanism of action of adenosine?

      Your Answer:

      Correct Answer: A1 receptor agonist

      Explanation:

      Adenosine is an agonist of the A1 receptor in the AV node, which inhibits adenylyl cyclase and reduces cAMP levels. This leads to hyperpolarisation by increasing potassium outflow, effectively preventing supraventricular tachycardia from continuing. It is important to note that adenosine is not an alpha receptor antagonist, beta-2 receptor agonist, or beta receptor antagonist.

      Adenosine is commonly used to stop supraventricular tachycardias. Its effects are boosted by dipyridamole, an antiplatelet agent, but blocked by theophyllines. However, asthmatics should avoid it due to the risk of bronchospasm. Adenosine works by causing a temporary heart block in the AV node. It activates the A1 receptor in the atrioventricular node, which inhibits adenylyl cyclase, reducing cAMP and causing hyperpolarization by increasing outward potassium flux. Adenosine has a very short half-life of about 8-10 seconds and should be infused through a large-caliber cannula.

      Adenosine can cause chest pain, bronchospasm, and transient flushing. It can also enhance conduction down accessory pathways, leading to an increased ventricular rate in conditions such as WPW syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - A 63-year-old male on the wards has come to you with recent onset...

    Incorrect

    • A 63-year-old male on the wards has come to you with recent onset indigestion. He denies any red flag symptoms and has a medical history of hypertension, congestive heart failure, depression, and gout. Later in the day, while reviewing his routine blood results, you notice an abnormality.

      Here are his blood results from two days ago and today:

      Parameter 2 days ago Today
      Hb 135 g/l 134 g/l
      Platelets 310 * 109/l 312 * 109/l
      WBC 6.5 * 109/l 6.4 * 109/l
      Na+ 142 mmol/l 128 mmol/l
      K+ 4.2 mmol/l 3.8 mmol/l
      Urea 4.8 mmol/l 4.8 mmol/l
      Creatinine 60 µmol/l 61 µmol/l

      What could be the reason for the discrepancy in his blood results?

      Your Answer:

      Correct Answer: Combined use of indapamide and omeprazole

      Explanation:

      Severe hyponatraemia can occur when PPIs and thiazide diuretics are used together. The patient in question has recently experienced hyponatraemia, which is most likely caused by the combination of indapamide and omeprazole. It is probable that omeprazole was prescribed for his indigestion, while he is likely taking indapamide due to his history of congestive heart failure. It is important to note that the other options listed can cause hypernatraemia, not hyponatraemia.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She...

    Incorrect

    • A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She has a medical history of deep vein thrombosis and pulmonary embolism and is currently taking warfarin for life. During this visit, her INR level is found to be 4.4, which is higher than her target of 3.0. Upon further inquiry, she reveals that she had been prescribed antibiotics by her GP recently. Can you identify the clotting factors that warfarin affects?

      Your Answer:

      Correct Answer: Factors II, VII, IX, X

      Explanation:

      Warfarin is an oral anticoagulant that is widely used to prevent blood clotting in various medical conditions, including stroke prevention in atrial fibrillation and venous thromboembolism. Warfarin primarily targets the Vitamin K dependent clotting factors, which include factors II, VII, IX, and X.

      To monitor the effectiveness of warfarin therapy, the International Normalized Ratio (INR) is used. However, the INR can be affected by drug interactions, such as those with antibiotics. Therefore, it is important to be aware of the common drug interactions associated with warfarin.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A 28-year-old man arrives at the emergency department complaining of chest pain. The...

    Incorrect

    • A 28-year-old man arrives at the emergency department complaining of chest pain. The ECG strip shows an irregularly irregular tachycardia that is not in sinus rhythm.

      Where is the site of this pathology?

      Your Answer:

      Correct Answer: Discordance of electrical activity from the myocytes surrounding the pulmonary veins

      Explanation:

      Atrial fibrillation occurs when irregular electrical activity from the myocytes surrounding the pulmonary veins overwhelms the regular impulses from the sinus node. This leads to discordance of electrical activity in the atria, causing the irregularly irregular tachycardia characteristic of AF. It is important to note that AF is not caused by an absence of electrical activity in the atria or bundle of His.

      Atrial fibrillation (AF) is a heart condition that requires prompt management. The management of AF depends on the patient’s haemodynamic stability and the duration of the AF. For haemodynamically unstable patients, electrical cardioversion is recommended. For haemodynamically stable patients, rate control is the first-line treatment strategy, except in certain cases. Medications such as beta-blockers, calcium channel blockers, and digoxin are commonly used to control the heart rate. Rhythm control is another treatment option that involves the use of medications such as beta-blockers, dronedarone, and amiodarone. Catheter ablation is recommended for patients who have not responded to or wish to avoid antiarrhythmic medication. The procedure involves the use of radiofrequency or cryotherapy to ablate the faulty electrical pathways that cause AF. Anticoagulation is necessary before and during the procedure to reduce the risk of stroke. The success rate of catheter ablation varies, with around 50% of patients experiencing an early recurrence of AF within three months. However, after three years, around 55% of patients who have undergone a single procedure remain in sinus rhythm.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A 40-year-old woman comes to the clinic complaining of increasing fatigue and shortness...

    Incorrect

    • A 40-year-old woman comes to the clinic complaining of increasing fatigue and shortness of breath during physical activity over the past 6 months. She has no significant medical history and is not taking any medications.

      During the examination, the lungs are clear upon auscultation, but a loud P2 heart sound is detected. An X-ray of the chest reveals enlarged shadows of the pulmonary artery.

      What could be the underlying cause of this condition?

      Your Answer:

      Correct Answer: Endothelin

      Explanation:

      The cause of pulmonary vasoconstriction in primary pulmonary hypertension is endothelin, which is why antagonists are used to treat the condition. This is supported by the symptoms and diagnostic findings in a woman between the ages of 20 and 50. Other options such as bradykinin, iloprost, and nitric oxide are not vasoconstrictors and do not play a role in the development of pulmonary hypertension.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 29-year-old man is brought to the emergency surgical theatre with multiple stab...

    Incorrect

    • A 29-year-old man is brought to the emergency surgical theatre with multiple stab wounds to his abdomen and is hypotensive despite resuscitative measures. During a laparotomy, a profusely bleeding vessel is found at a certain level of the lumbar vertebrae. The vessel is identified as the testicular artery and is ligated to stop the bleeding. At which vertebral level was the artery identified?

      Your Answer:

      Correct Answer: L2

      Explanation:

      The testicular arteries originate from the abdominal aorta at the level of the second lumbar vertebrae (L2).

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 25-year-old man experiences a blunt head trauma and presents with a GCS...

    Incorrect

    • A 25-year-old man experiences a blunt head trauma and presents with a GCS of 7 upon admission. What is the primary factor influencing cerebral blood flow in this scenario?

      Your Answer:

      Correct Answer: Intracranial pressure

      Explanation:

      Cerebral blood flow can be impacted by both hypoxaemia and acidosis, but in cases of trauma, the likelihood of increased intracranial pressure is much higher, particularly when the Glasgow Coma Scale (GCS) is low. This can have a negative impact on cerebral blood flow.

      Understanding Cerebral Blood Flow and Angiography

      Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.

      Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - A 67-year-old woman visited her physician complaining of palpitations. She has a medical...

    Incorrect

    • A 67-year-old woman visited her physician complaining of palpitations. She has a medical history of type 2 diabetes, hypertension, and ischemic heart disease. Her current medications include Metformin, insulin injections, candesartan, and metoprolol. The doctor reviewed her medical records and decided to prescribe a medication to prevent complications related to the underlying cause of her palpitations. The doctor informed her that she would need to visit the hospital laboratory regularly to have her blood checked due to the medication's risk of bleeding. Which blood clotting factors are affected by this condition?

      Your Answer:

      Correct Answer: Factor IX

      Explanation:

      This patient with a medical history of diabetes, hypertension, and diabetes is likely experiencing atrial fibrillation, which increases the risk of stroke due to the formation of blood clots in the left atrium. To minimize this risk, the anticoagulant warfarin is commonly prescribed, but it also increases the risk of bleeding. Regular monitoring of the International Normalized Ratio is necessary to ensure the patient’s safety. Warfarin works by inhibiting Vitamin K epoxide reductase, which affects the synthesis of clotting factors II, VII, IX, and X, as well as protein C and S. Factor IX is a vitamin K dependent clotting factor and is deficient in Hemophilia B. Factors XI and V are not vitamin K dependent clotting factors, while Factor I is not a clotting factor at all.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - A 65-year-old man visits his doctor with complaints of shortness of breath and...

    Incorrect

    • A 65-year-old man visits his doctor with complaints of shortness of breath and swelling in his lower limbs. To aid in diagnosis, the doctor orders a B-type natriuretic peptide test. What triggers the production of B-type natriuretic peptide in heart failure?

      Your Answer:

      Correct Answer: Increased ventricular filling pressure

      Explanation:

      When the ventricles are under strain, they release B-type natriuretic peptide. Normally, increased ventricular filling pressures would result in a larger diastolic volume and cardiac output through the Frank-Starling mechanism. However, in heart failure, this mechanism is overwhelmed and the ventricles are stretched too much for a strong contraction.

      To treat heart failure, ACE inhibitors are used to decrease the amount of BNP produced. A decrease in stroke volume is a sign of heart failure. The body compensates for heart failure by increasing activation of the renin-angiotensin-aldosterone system.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A 67-year-old woman visits her GP for a routine hypertension check-up. She has...

    Incorrect

    • A 67-year-old woman visits her GP for a routine hypertension check-up. She has been on amlodipine for a year and her blood pressure is under control, but she frequently experiences ankle swelling. The swelling is more pronounced towards the end of the day since she started taking amlodipine. The GP decides to switch her medication to a diuretic. Which diuretic targets the sodium-chloride transporter in the distal tubule?

      Your Answer:

      Correct Answer: Bendroflumethiazide (thiazide diuretic)

      Explanation:

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 39-year-old woman is being evaluated for progressive dyspnea and is found to...

    Incorrect

    • A 39-year-old woman is being evaluated for progressive dyspnea and is found to have primary pulmonary hypertension. She is prescribed bosentan. What is the mode of action of bosentan?

      Your Answer:

      Correct Answer: Endothelin receptor antagonist

      Explanation:

      Bosentan is an antagonist of the endothelin-1 receptor.

      Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.

      The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.

      Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 70-year-old male inpatient, three days post myocardial infarction, has a sudden onset...

    Incorrect

    • A 70-year-old male inpatient, three days post myocardial infarction, has a sudden onset of intense crushing chest pain.
      What is the most effective cardiac enzyme to determine if this patient has experienced a recurrent heart attack?

      Your Answer:

      Correct Answer: Creatine kinase

      Explanation:

      The Most Useful Enzyme to Measure in Diagnosing Early Re-infarction

      In diagnosing early re-infarction, measuring the levels of creatine kinase is the most useful enzyme to use. This is because the levels of creatine kinase return to normal relatively quickly, unlike the levels of troponins which remain elevated at this stage post MI and are therefore not useful in diagnosing early re-infarction.

      The table above shows the rise, peak, and fall of various enzymes in the body after a myocardial infarction. As seen in the table, the levels of creatine kinase rise within 4-6 hours, peak at 24 hours, and fall within 3-4 days. On the other hand, troponin levels rise within 4-6 hours, peak at 12-16 hours, and fall within 5-14 days. This indicates that measuring creatine kinase levels is more useful in diagnosing early re-infarction as it returns to normal levels faster than troponins.

      In conclusion, measuring the levels of creatine kinase is the most useful enzyme to use in diagnosing early re-infarction. Its levels return to normal relatively quickly, making it a more reliable indicator of re-infarction compared to troponins.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - An ECG is performed on a 60-year-old patient in the cardiology ward. On...

    Incorrect

    • An ECG is performed on a 60-year-old patient in the cardiology ward. On the ECG there are regular p waves present, and a QRS complex is associated with each p wave. The PR interval is 0.26 seconds. There are no missed p waves.

      What is the most probable diagnosis?

      Your Answer:

      Correct Answer: 1st degree heart block

      Explanation:

      Understanding Heart Blocks: Types and Features

      Heart blocks are a type of cardiac conduction disorder that can lead to serious complications such as syncope and heart failure. There are three types of heart blocks: first degree, second degree, and third degree (complete) heart block.

      First degree heart block is characterized by a prolonged PR interval of more than 0.2 seconds. Second degree heart block can be further divided into two types: type 1 (Mobitz I, Wenckebach) and type 2 (Mobitz II). Type 1 is characterized by a progressive prolongation of the PR interval until a dropped beat occurs, while type 2 has a constant PR interval but the P wave is often not followed by a QRS complex.

      Third degree (complete) heart block is the most severe type of heart block, where there is no association between the P waves and QRS complexes. This can lead to a regular bradycardia with a heart rate of 30-50 bpm, wide pulse pressure, and cannon waves in the neck JVP. Additionally, variable intensity of S1 can be observed.

      It is important to recognize the features of heart blocks and differentiate between the types in order to provide appropriate management and prevent complications. Regular monitoring and follow-up with a healthcare provider is recommended for individuals with heart blocks.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - What changes occur in the newborn after delivery? ...

    Incorrect

    • What changes occur in the newborn after delivery?

      Your Answer:

      Correct Answer: The ductus arteriosus closes

      Explanation:

      Within a few hours of birth, the foramen ovale, ductus arteriosus, and umbilical vessels all close. The foramen ovale, which allows blood to bypass the lungs by shunting from the right atrium to the left atrium, closes as the lungs become functional and the left atrial pressure exceeds the right atrial pressure. The ductus arteriosus, which connects the pulmonary artery to the aorta, also closes to form the ligamentum arteriosum, allowing blood to circulate into the pulmonary artery and become oxygenated. After a few days, Haemoglobin F is replaced by Haemoglobin A, which has a lower affinity for oxygen and may cause physiological jaundice in the newborn due to the breakdown of fetal blood cells. The first few breaths help to expel lung fluid from the fetal alveoli. If the ductus arteriosus fails to close, it can result in a patent ductus arteriosus (PDA), which can lead to serious health complications such as pulmonary hypertension, heart failure, and arrhythmias.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has...

    Incorrect

    • A 28-year-old pregnant woman discusses her varicose veins with her midwife. She has noticed these veins for a couple of weeks now, and they appeared during her pregnancy. Lately, she has observed red-brown discoloration around the veins on the back of her calf. What could be the probable root cause of this?

      Your Answer:

      Correct Answer: Haemosiderin deposition

      Explanation:

      The hyperpigmentation observed in patients with varicose eczema/venous ulcers is likely caused by haemosiderin deposition. This occurs when red blood cells burst due to venous stasis, leading to the release of haemoglobin which is stored as haemosiderin. The excess haemosiderin causes a local red-brown discolouration around areas of varicose veins.

      Acanthosis nigricans is an unlikely cause as it is associated with metabolic disorders and not varicose veins. Atrophie blanche describes hypopigmentation seen in venous ulcers, while lipodermatosclerosis causes thickening of the skin in varicose veins without changing the skin color. Melanoma, a skin cancer that causes dark discolouration, is unlikely to be associated with varicose veins and is an unlikely explanation for the observed discolouration on the back of the calf.

      Understanding Varicose Veins

      Varicose veins are enlarged and twisted veins that occur when the valves in the veins become weak or damaged, causing blood to flow backward and pool in the veins. They are most commonly found in the legs and can be caused by various factors such as age, gender, pregnancy, obesity, and genetics. While many people seek treatment for cosmetic reasons, others may experience symptoms such as aching, throbbing, and itching. In severe cases, varicose veins can lead to skin changes, bleeding, superficial thrombophlebitis, and venous ulceration.

      To diagnose varicose veins, a venous duplex ultrasound is typically performed to detect retrograde venous flow. Treatment options vary depending on the severity of the condition. Conservative treatments such as leg elevation, weight loss, regular exercise, and compression stockings may be recommended for mild cases. However, patients with significant or troublesome symptoms, skin changes, or a history of bleeding or ulcers may require referral to a specialist for further evaluation and treatment. Possible treatments include endothermal ablation, foam sclerotherapy, or surgery.

      In summary, varicose veins are a common condition that can cause discomfort and cosmetic concerns. While many cases do not require intervention, it is important to seek medical attention if symptoms or complications arise. With proper diagnosis and treatment, patients can manage their condition and improve their quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - A patient in his late 60s presents with dyspnoea, orthopnoea, paroxysmal nocturnal dyspnoea,...

    Incorrect

    • A patient in his late 60s presents with dyspnoea, orthopnoea, paroxysmal nocturnal dyspnoea, fatigue, cyanosis. A diagnosis of acute heart failure is made. He is started on diuretics, ACE inhibitors, beta-blockers but shows minimal improvement with medications.

      What should be considered if he continues to fail to improve?

      Your Answer:

      Correct Answer: Continuous positive airway pressure

      Explanation:

      If a patient with acute heart failure does not show improvement with appropriate medication, CPAP should be considered as a viable treatment option.

      Heart failure requires acute management, with recommended treatments including IV loop diuretics such as furosemide or bumetanide. Oxygen may also be given in accordance with British Thoracic Society guidelines to maintain oxygen saturations between 94-98%. Vasodilators such as nitrates should not be routinely given to all patients, but may be considered for those with concomitant myocardial ischaemia, severe hypertension, or regurgitant aortic or mitral valve disease. However, hypotension is a major side-effect and contraindication.

      For patients with respiratory failure, CPAP may be used. In cases of hypotension or cardiogenic shock, treatment can be challenging as loop diuretics and nitrates may exacerbate hypotension. Inotropic agents like dobutamine may be considered for patients with severe left ventricular dysfunction and potentially reversible cardiogenic shock. Vasopressor agents like norepinephrine are typically only used if there is insufficient response to inotropes and evidence of end-organ hypoperfusion. Mechanical circulatory assistance such as intra-aortic balloon counterpulsation or ventricular assist devices may also be used.

      While opiates were previously used routinely to reduce dyspnoea/distress in patients, NICE now advises against routine use due to studies suggesting increased morbidity in patients given opiates. Regular medication for heart failure such as beta-blockers and ACE-inhibitors should be continued, with beta-blockers only stopped if the patient has a heart rate less than 50 beats per minute, second or third degree atrioventricular block, or shock.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - A 67-year-old man complains of leg cramping that occurs while walking and quickly...

    Incorrect

    • A 67-year-old man complains of leg cramping that occurs while walking and quickly subsides with rest. During examination, you observe hair loss in his lower limbs and a weak dorsalis pedis and absent posterior tibial pulse. Your treatment plan involves administering naftidrofuryl. What is the mechanism of action of naftidrofuryl?

      Your Answer:

      Correct Answer: 5-HT2 receptor antagonist

      Explanation:

      Naftidrofuryl, a 5-HT2 receptor antagonist, can be used to treat peripheral vascular disease (PVD) and alleviate symptoms such as intermittent claudication. This medication works by causing vasodilation, which increases blood flow to areas of the body affected by PVD. On the other hand, drugs like doxazosin, an alpha 1 blocker, do not have a role in treating PVD. Beta blockers, which can worsen intermittent claudication by inducing vasoconstriction, are also not recommended for PVD treatment.

      Managing Peripheral Arterial Disease

      Peripheral arterial disease (PAD) is closely associated with smoking, and patients who still smoke should be provided with assistance to quit. Comorbidities such as hypertension, diabetes mellitus, and obesity should also be treated. All patients with established cardiovascular disease, including PAD, should be taking a statin, with atorvastatin 80 mg currently recommended. In 2010, NICE recommended clopidogrel as the first-line treatment for PAD patients over aspirin.

      Exercise training has been shown to have significant benefits, and NICE recommends a supervised exercise program for all PAD patients before other interventions. Severe PAD or critical limb ischaemia may be treated with endovascular or surgical revascularization, with endovascular techniques typically used for short segment stenosis, aortic iliac disease, and high-risk patients. Surgical techniques are typically used for long segment lesions, multifocal lesions, lesions of the common femoral artery, and purely infrapopliteal disease. Amputation should be reserved for patients with critical limb ischaemia who are not suitable for other interventions such as angioplasty or bypass surgery.

      Drugs licensed for use in PAD include naftidrofuryl oxalate, a vasodilator sometimes used for patients with a poor quality of life, and cilostazol, a phosphodiesterase III inhibitor with both antiplatelet and vasodilator effects, which is not recommended by NICE.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack....

    Incorrect

    • A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack. The procedure is successful with no complications. However, the patient develops new hoarseness of voice and loss of effective cough mechanism post-surgery. There are no notable findings upon examination of the oral cavity.

      Which structure has been affected by the surgery?

      Your Answer:

      Correct Answer: Cranial nerve X

      Explanation:

      Speech is innervated by the vagus (X) nerve, so any damage to this nerve can cause speech problems. Injuries to one side of the vagus nerve can result in hoarseness and vocal cord paralysis on the same side, while bilateral injuries can lead to aphonia and stridor. Other symptoms of vagal disease may include dysphagia, loss of cough reflex, gastroparesis, and cardiovascular effects. The facial nerve (VII) may also be affected during carotid surgery, causing muscle weakness in facial expression. However, the vestibulocochlear nerve (VIII) is not involved in speech and would not be damaged during carotid surgery. The accessory nerve (XI) does not innervate speech muscles and is rarely affected during carotid surgery, causing weakness in shoulder elevation instead. Hypoglossal (XII) palsy is a rare complication of carotid surgery that causes tongue deviation towards the side of the lesion, but not voice hoarseness.

      The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.

      The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.

      The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - A newborn male delivered at 38 weeks gestation presents with severe cyanosis within...

    Incorrect

    • A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.

      During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.

      A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.

      What is the most likely embryological pathology underlying this neonate's congenital heart defect?

      Your Answer:

      Correct Answer: Failure of the aorticopulmonary septum to spiral

      Explanation:

      Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - A 63-year-old woman comes to a vascular clinic complaining of varicosities in the...

    Incorrect

    • A 63-year-old woman comes to a vascular clinic complaining of varicosities in the area supplied by the short saphenous vein.

      Into which vessel does this vein directly empty?

      Your Answer:

      Correct Answer: Popliteal vein

      Explanation:

      The correct answer is that the short saphenous vein passes posterior to the lateral malleolus and ascends between the two heads of the gastrocnemius muscle to empty directly into the popliteal vein. The long saphenous vein drains directly into the femoral vein and does not receive blood from the short saphenous vein. The dorsal venous arch drains the foot into the short and great saphenous veins but does not receive blood from either. The posterior tibial vein is part of the deep venous system but does not directly receive the short saphenous vein.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - A 4-year-old boy is observed by his mother to turn blue around the...

    Incorrect

    • A 4-year-old boy is observed by his mother to turn blue around the lips abruptly after crying. This has occurred several times before and the child promptly assumes the squatting position to alleviate his symptoms. During previous check-ups, the child was found to have various heart issues, including a boot-shaped heart on his chest x-ray.

      What is the probable diagnosis for his condition and what is the underlying cause?

      Your Answer:

      Correct Answer: Failed migration of the neural crest cells

      Explanation:

      The division of the truncus arteriosus into the aorta and pulmonary trunk is dependent on the migration of neural crest cells from the pharyngeal arches. If this process is disrupted, it can lead to Tetralogy of Fallot, which is likely the condition that the patient in question is experiencing. The patient’s frequent ‘tet’ spells and adoption of a squatting position are indicative of this condition, as is the boot-shaped heart seen on chest x-ray due to right ventricular hypertrophy. Other conditions that can result from failed neural crest cell migration include transposition of the great vessels and persistent truncus arteriosus.

      On the other hand, a VSD is associated with a failure of the endocardial cushion, but this would not explain all of the patient’s malformations. Similarly, defects in the ostium primum or secundum would result in an ASD, which is often asymptomatic.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Passmed