00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - What is the half life of insulin in the circulation of a typical...

    Incorrect

    • What is the half life of insulin in the circulation of a typical healthy adult?

      Your Answer: Between 4 and 5 hours

      Correct Answer: Less than 30 minutes

      Explanation:

      Enzymes in the bloodstream break down insulin, resulting in a half-life of under 30 minutes. In type 2 diabetes, there may be irregularities in the insulin clearance process.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      6.8
      Seconds
  • Question 2 - A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities...

    Incorrect

    • A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.

      What is the reason for the facial muscle twitching observed during the examination?

      Your Answer: Increased irritability of peripheral nerves due to hyponatraemia

      Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia

      Explanation:

      Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.

      Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.

      Understanding Hypoparathyroidism

      Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.

      Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.

    • This question is part of the following fields:

      • Endocrine System
      14.4
      Seconds
  • Question 3 - A 10-year-old girl visits her pediatrician with her mother. She is worried that...

    Incorrect

    • A 10-year-old girl visits her pediatrician with her mother. She is worried that she hasn't started puberty yet while some of her classmates have.

      The pediatrician explains to the young girl and her mother that the onset of puberty can vary and that it is considered delayed if there are no signs of puberty by the age of 13 years. The pediatrician reassures the girl that there is no need to worry and that she should be patient.

      What is the first sign the girl should expect?

      Your Answer: Development of pubic hair

      Correct Answer: Testicular enlargement

      Explanation:

      The initial indication of male puberty is the growth of the testicles. This typically happens between the ages of 9.5 and 13.5 years and is the first sign of male puberty. Testicular enlargement is the only pubertal change present in Tanner stage 1.

      During Tanner stage 2, which usually occurs between the ages of 10.5 and 14.5 years, penis growth begins.

      Pubic hair development also starts during Tanner stage 2, between the ages of 9.9 and 14.0 years.

      The height growth spurt occurs at age 14 and reaches a maximum of 10cm/year in Tanner.

      The voice changes during Tanner stage 3, which typically happens around 13.5 years old.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      55.5
      Seconds
  • Question 4 - A 49-year-old woman has been diagnosed with a phaeochromocytoma. What is the primary...

    Incorrect

    • A 49-year-old woman has been diagnosed with a phaeochromocytoma. What is the primary amino acid from which catecholamines are derived?

      Your Answer: Alanine

      Correct Answer: Tyrosine

      Explanation:

      Tyrosine serves as the precursor for catecholamine hormones, which undergo modification by a DOPA decarboxylase enzyme to form dopamine. Subsequently, through two additional enzymatic alterations, dopamine is converted to noradrenaline and ultimately adrenaline.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      7.5
      Seconds
  • Question 5 - Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running...

    Correct

    • Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running group. As her physician, it is important to inform her of the potential impact this increase in physical activity may have on her blood sugar levels. What advice do you give her?

      Your Answer: He is at risk of an early and a late drop, hours later, in his blood glucose due muscle uptake and replacement of glycogen

      Explanation:

      Glucose levels are impacted by exercise in various ways. Firstly, there is an initial decrease due to the increased uptake of glucose in the muscles through GLUT-2, which does not require insulin. Secondly, during high-intensity sports, the release of adrenaline and cortisol can cause a temporary increase in blood glucose levels, especially during competitive events. Finally, there is a delayed decrease as the muscles and liver glycogen are utilized during exercise and then replenished over the following hours.

      Glycogenesis – the process of storing glucose as glycogen

      Glycogenesis is the process of converting glucose into glycogen for storage in the liver and muscles. This process is important for maintaining blood glucose levels and providing energy during times of fasting or exercise. The key enzyme involved in glycogenesis is glycogen synthase, which catalyzes the formation of α-1,4-glycosidic bonds between glucose molecules to form glycogen. Branching enzyme then creates α-1,6-glycosidic bonds to form branches in the glycogen molecule. Glycogenin, a protein that acts as a primer for glycogen synthesis, is also involved in the process. Glycogenesis is regulated by hormones such as insulin and glucagon, which stimulate and inhibit glycogen synthesis, respectively. Understanding the process of glycogenesis is important for understanding how the body stores and utilizes glucose for energy.

    • This question is part of the following fields:

      • Endocrine System
      113.6
      Seconds
  • Question 6 - A 43-year-old obese man comes to your clinic for a diabetes check-up. Despite...

    Correct

    • A 43-year-old obese man comes to your clinic for a diabetes check-up. Despite being treated with metformin and gliclazide, his HbA1c remains elevated at 55 mmol/mol. He has previously found it difficult to follow dietary advice and lose weight. To enhance his diabetic management, you prescribe sitagliptin, a DPP-4 inhibitor. What is the mode of action of this novel medication?

      Your Answer: Inhibits the breakdown of incretins

      Explanation:

      DPP-4 inhibitors, GLP-1 agonists, SGLT-2 inhibitors, thiazolidinediones, and sulfonylureas are all medications used to treat diabetes. DPP-4 inhibitors work by inhibiting the breakdown of incretins such as GLP-1 and GIP, which are released in response to food and help to lower blood glucose levels. GLP-1 agonists directly stimulate incretin receptors, while SGLT-2 inhibitors increase the urinary secretion of glucose. Thiazolidinediones stimulate intracellular signaling molecules responsible for glucose and lipid metabolism, and sulfonylureas stimulate beta cells to secrete more insulin. However, sulfonylureas may be less effective in long-standing diabetes as many beta cells may no longer function properly.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      43.3
      Seconds
  • Question 7 - A 45-year-old woman presents to the hypertension clinic with refractory hypertension. She was...

    Incorrect

    • A 45-year-old woman presents to the hypertension clinic with refractory hypertension. She was diagnosed with hypertension at the age of 33 and has been on multiple antihypertensive medications without success. She reports experiencing intermittent headaches, flushes, and palpitations.

      During the discussion of further treatment options, the patient reveals that her blood pressure dropped to an average of 100/65 mmHg when she was prescribed an alpha-blocker. This suggests that her hypertension may have a secondary cause.

      What is the most likely anatomical location of the underlying issue?

      Your Answer: Renal system

      Correct Answer: Adrenal medulla

      Explanation:

      Although a 1.5cm difference in kidney size or a single occurrence of flash edema may prompt the initiation of an ACE inhibitor, the symptoms described in the patient’s medical history are more indicative of a phaeochromocytoma, which is likely originating from the adrenal medulla.

      The Function of Adrenal Medulla

      The adrenal medulla is responsible for producing almost all of the adrenaline in the body, along with small amounts of noradrenaline. Essentially, it is a specialized and enlarged sympathetic ganglion. This gland plays a crucial role in the body’s response to stress and danger, as adrenaline is a hormone that prepares the body for the fight or flight response. When the body perceives a threat, the adrenal medulla releases adrenaline into the bloodstream, which increases heart rate, blood pressure, and respiration, while also dilating the pupils and increasing blood flow to the muscles. This response helps the body to react quickly and effectively to danger. Overall, the adrenal medulla is an important component of the body’s stress response system.

    • This question is part of the following fields:

      • Endocrine System
      34.6
      Seconds
  • Question 8 - A 67-year-old man has visited the doctor with concerns about his blood glucose...

    Correct

    • A 67-year-old man has visited the doctor with concerns about his blood glucose levels. He has type 1 diabetes and also suffers from chronic obstructive pulmonary disease (COPD). Following a recent bout of pneumonia, he has been experiencing difficulty in managing his blood sugars. You suspect that one of his newly prescribed medications may be contributing to this issue. Which medication could be causing acute problems with diabetic control?

      Your Answer: Prednisolone

      Explanation:

      The use of corticosteroids, such as prednisolone, can have a negative impact on diabetic control due to their anti-insulin effects. This can cause an increase in glucagon levels, leading to elevated blood sugar levels. While this effect is usually temporary and should resolve on its own, higher doses of insulin may be necessary during treatment. Prednisolone is often prescribed to manage exacerbations of COPD.

      Amoxicillin, a penicillin antibiotic, can be prescribed alongside prednisolone to treat infective asthma exacerbations. Its bactericidal effects are unlikely to affect diabetes control.

      Carbocisteine is a mucolytic medication commonly used for long-term management of COPD and bronchiectasis. It helps to thin sputum in the lungs, making it easier to cough up and preventing colonization. It is not known to worsen diabetes control.

      Doxycycline, a tetracycline antibiotic, is commonly used to treat COPD exacerbations. However, it does not typically affect blood sugar control and is unlikely to be a contributing factor in this case.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      11.4
      Seconds
  • Question 9 - A 27-year-old mother is concerned about her infant's skin tone. The baby was...

    Incorrect

    • A 27-year-old mother is concerned about her infant's skin tone. The baby was delivered naturally 18 days ago and is now showing signs of jaundice. Despite having normal vital signs, what could be the possible reason for the baby's prolonged jaundice?

      Your Answer: Haemolytic disease of the newborn

      Correct Answer: Congenital hypothyroidism

      Explanation:

      The age of the baby is an important factor in determining the possible causes of neonatal jaundice. Congenital hypothyroidism may be responsible for prolonged jaundice in newborns. The following is a summary of the potential causes of jaundice based on the age at which it appears:

      Jaundice within 24 hours of birth may be caused by haemolytic disease of the newborn, infections, or G6PD deficiency.

      Jaundice appearing between 24-72 hours may be due to physiological factors, sepsis, or polycythaemia.

      Jaundice appearing after 72 hours may be caused by extrahepatic biliary atresia, sepsis, or other factors.

      Understanding Congenital Hypothyroidism

      Congenital hypothyroidism is a condition that affects approximately 1 in 4000 newborns. If left undiagnosed and untreated within the first four weeks of life, it can lead to irreversible cognitive impairment. Some of the common features of this condition include prolonged neonatal jaundice, delayed mental and physical milestones, short stature, a puffy face, macroglossia, and hypotonia.

      To ensure early detection and treatment, children are screened for congenital hypothyroidism at 5-7 days of age using the heel prick test. This test involves taking a small sample of blood from the baby’s heel and analyzing it for thyroid hormone levels. If the results indicate low levels of thyroid hormone, the baby will be referred for further testing and treatment.

      It is important for parents and healthcare providers to be aware of the signs and symptoms of congenital hypothyroidism and to ensure that newborns receive timely screening and treatment to prevent long-term complications. With early detection and appropriate management, children with congenital hypothyroidism can lead healthy and fulfilling lives.

    • This question is part of the following fields:

      • Endocrine System
      18
      Seconds
  • Question 10 - A 50-year-old man has a laparotomy and repair of incisional hernia. Which hormone...

    Correct

    • A 50-year-old man has a laparotomy and repair of incisional hernia. Which hormone is most unlikely to be released in higher amounts after the surgery?

      Your Answer: Insulin

      Explanation:

      Reduced secretion of insulin and thyroxine is common after surgery, which can make it challenging to manage diabetes in people with insulin resistance due to the additional release of glucocorticoids.

      Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.

    • This question is part of the following fields:

      • Endocrine System
      13
      Seconds
  • Question 11 - A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia...

    Incorrect

    • A 32-year-old man has been admitted to the emergency department with severe hypocalcaemia that has not responded to calcium replacement therapy. What other serum electrolytes should be checked urgently?

      Your Answer: Bicarbonate

      Correct Answer: Magnesium

      Explanation:

      If a person has hypomagnesaemia, it can lead to hypocalcaemia and make it difficult to treat. Therefore, when dealing with hypocalcaemia, it is important to keep an eye on the levels of calcium, phosphate, and magnesium. The phosphate levels can provide insight into potential causes, as low calcium levels combined with high phosphate levels may indicate hypoparathyroidism.

      The Importance of Magnesium and Calcium in the Body

      Magnesium and calcium are essential minerals in the body. Magnesium plays a crucial role in the secretion and action of parathyroid hormone (PTH) on target tissues. However, a deficiency in magnesium can cause hypocalcaemia and make patients unresponsive to calcium and vitamin D supplementation.

      The body contains 1000 mmol of magnesium, with half stored in bones and the rest in muscle, soft tissues, and extracellular fluid. Unlike calcium, there is no specific hormonal control of magnesium. Hormones such as PTH and aldosterone affect the renal handling of magnesium.

      Magnesium and calcium also interact at a cellular level. A decrease in magnesium levels can affect the permeability of cellular membranes to calcium, leading to hyperexcitability. Therefore, it is essential to maintain adequate levels of both magnesium and calcium in the body for optimal health.

    • This question is part of the following fields:

      • Endocrine System
      29.2
      Seconds
  • Question 12 - A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to...

    Incorrect

    • A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?

      Your Answer: Parafollicular C cells

      Correct Answer: Chromaffin cells

      Explanation:

      The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.

      Calcitonin is secreted by the parafollicular C cells in the thyroid gland.

      The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      76.9
      Seconds
  • Question 13 - A 65-year-old man with a history of type 2 diabetes is being seen...

    Incorrect

    • A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.

      He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.

      His most recent HbA1c result is:

      HbA1c 58 mmol/L (<42)

      After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.

      What is the mechanism of action for this new medication?

      Your Answer: Activation of glucagon-like-peptide-1 (GLP-1) receptor

      Correct Answer: Binding to KATP channels on pancreatic beta cell membrane

      Explanation:

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      113.4
      Seconds
  • Question 14 - A 7-year-old boy is brought to the doctor by his father with a...

    Incorrect

    • A 7-year-old boy is brought to the doctor by his father with a complaint of frequent urination and excessive thirst. Upon conducting a fasting blood glucose test, the results are found to be abnormally high. The doctor suspects type 1 diabetes and initiates first-line injectable therapy.

      What characteristic of this medication should be noted?

      Your Answer: Decreases cellular uptake of potassium

      Correct Answer: Decreases serum potassium

      Explanation:

      Insulin stimulates the Na+/K+ ATPase pump, which leads to a decrease in serum potassium levels. This is the primary treatment for type 1 diabetes, where the pancreas no longer produces insulin, causing high blood sugar levels. Injectable insulin allows glucose to enter cells, and insulin also increases cellular uptake of potassium while decreasing serum potassium levels. Insulin also stimulates muscle protein synthesis, reducing muscle protein loss. Insulin is secreted in response to hyperglycaemia, where high blood sugar levels trigger the beta cells of the pancreas to release insulin in healthy individuals.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      23.5
      Seconds
  • Question 15 - A 38-year-old woman presents with symptoms of irritability and changes in bowel habits....

    Correct

    • A 38-year-old woman presents with symptoms of irritability and changes in bowel habits. During examination, a smooth enlargement of the thyroid gland is noted. Thyroid function tests are ordered and the results are as follows:
      TSH 0.1 mug/l
      Free T4 35 pmol/l
      What is the most likely underlying diagnosis?

      Your Answer: Graves disease

      Explanation:

      When TSH receptor antibodies are present, they stimulate the thyroid to produce T4. This results in a decrease in TSH levels due to negative feedback on the pituitary. However, in cases where hyperthyroidism is caused by pregnancy, the TSH levels are usually elevated.

      Understanding Thyroid Disease and its Management

      Thyroid disease can present with various manifestations, which can be classified based on the presence or absence of clinical signs of thyroid dysfunction and the presence of a mass. To assess thyroid disease, a thorough history and examination, including ultrasound, are necessary. If a nodule is identified, it should be sampled through an image-guided fine needle aspiration. Radionucleotide scanning is not very useful.

      Thyroid tumors can be papillary, follicular, anaplastic, medullary, or lymphoma. Multinodular goitre is a common reason for presentation, and if the patient is asymptomatic and euthyroid, they can be reassured. However, if they have compressive symptoms, surgery is required, and total thyroidectomy is the best option. Patients with endocrine dysfunction are initially managed by physicians, and surgery may be offered alongside radioiodine for those with Graves disease that fails with medical management or in patients who prefer not to be irradiated. Patients with hypothyroidism do not generally get offered a thyroidectomy.

      Complications following surgery include anatomical damage to the recurrent laryngeal nerve, bleeding, and damage to the parathyroid glands resulting in hypocalcaemia. For further information, the Association of Clinical Biochemistry guidelines for thyroid function tests and the British Association of Endocrine Surgeons website can be consulted.

    • This question is part of the following fields:

      • Endocrine System
      101.7
      Seconds
  • Question 16 - A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to...

    Incorrect

    • A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?

      Your Answer: Osteomalacia

      Correct Answer: Increased risk of mania

      Explanation:

      Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      19.5
      Seconds
  • Question 17 - A 15-year-old male arrives at the emergency department with intense abdominal pain and...

    Incorrect

    • A 15-year-old male arrives at the emergency department with intense abdominal pain and a decreased Glasgow coma score (GCS). Over the past few weeks, he has been experiencing excessive urination, abnormal thirst, and weight loss. Laboratory results reveal:

      Ketones 4.2 mmol/L (<0.6 mmol/L)
      Glucose 20 mmol/L
      pH 7.25

      What is the probable cause of the acidosis and hyperketonemia in this case?

      Your Answer: Uncontrolled ketolysis

      Correct Answer: Uncontrolled lipolysis

      Explanation:

      The likely cause of the patient’s condition is diabetic ketoacidosis, which is a result of uncontrolled lipolysis. This process leads to an excess of free fatty acids that are eventually converted into ketone bodies. It is important to note that proteolysis, the breakdown of proteins into smaller polypeptides, does not yield ketone bodies and is not the cause of this condition. While glycogenolysis and gluconeogenesis are increased due to the lack of insulin and rise of glucagon, they do not result in acidosis or elevated levels of ketone bodies. It is ketogenesis, not ketolysis, that leads to the increased levels of ketone bodies.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      19.7
      Seconds
  • Question 18 - A 42-year-old woman has been admitted to the renal ward with acute kidney...

    Correct

    • A 42-year-old woman has been admitted to the renal ward with acute kidney injury. Her blood test shows that her potassium levels are above normal limits. While renal failure is a known cause of hyperkalaemia, the patient mentions having an endocrine disorder in the past but cannot recall its name. This information is crucial as certain endocrine disorders can also cause potassium disturbances. Which of the following endocrine disorders is commonly associated with hyperkalaemia?

      Your Answer: Addison's disease

      Explanation:

      The correct answer is Addison’s disease, which is a condition of primary adrenal insufficiency. One of the hormones that is deficient in this disease is aldosterone, which plays a crucial role in maintaining the balance of potassium in the body. Aldosterone activates Na+/K+ ATPase pumps on the cell wall, causing the movement of potassium into the cell and increasing renal potassium secretion. Therefore, a lack of aldosterone leads to hyperkalaemia.

      Phaeochromocytomas are tumours that produce catecholamines and typically arise in the adrenal medulla. They are associated with hypertension and hyperglycaemia, but not disturbances in potassium balance.

      Hyperthyroidism is a condition of excess thyroid hormone and does not affect potassium balance.

      Conn’s syndrome, on the other hand, is a type of primary hyperaldosteronism where there is excess aldosterone production. Aldosterone activates the Na+/K+ pump on the cell wall, causing the movement of potassium into the cell, which can lead to hypokalaemia.

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      23
      Seconds
  • Question 19 - Samantha, a 75-year-old woman, presents to the GP with a complaint of breast...

    Incorrect

    • Samantha, a 75-year-old woman, presents to the GP with a complaint of breast growth that has developed rapidly over the past 3 months. She has never experienced this issue before and is worried about how it will affect her relationship with her husband. Despite her concern, Samantha insists that she has no trouble with sexual function. She has recently been diagnosed with a heart problem and is taking multiple medications for it, although she cannot recall their names. Other than that, she claims to be in good health.

      Upon examination, all of Samantha's vital signs are within normal limits. After measuring her height and weight, her body mass index is calculated to be 24 kg/m². Each breast is approximately 10 cm in diameter, with large nipples and tenderness but no pain. Moderate cardiomegaly and a 3rd heart sound are noted during chest assessment. No abnormalities are found during an abdominal examination. Pitting edema is present up to her mid calf.

      Based on the history and examination, what is the most probable cause of Samantha's gynaecomastia?

      Your Answer: Cirrhosis

      Correct Answer: Digoxin

      Explanation:

      Digoxin is the correct answer as it can lead to drug-induced gynaecomastia. Ronald is likely taking digoxin due to his heart failure, and this medication has a side effect of causing breast tissue growth in men. This is thought to occur because digoxin has a similar structure to oestrogen and can directly stimulate oestrogen receptors.

      While cirrhosis can also cause gynaecomastia, it is unlikely in this case as there are no signs or symptoms of liver disease. Cirrhosis typically causes gynaecomastia due to the liver’s reduced ability to clear oestrogens from the bloodstream.

      Obesity is not the correct answer as Ronald is not obese, with a BMI of 24 kg/m². However, obesity is a common cause of gynaecomastia as excess fat can be distributed to the breasts and result in increased aromatisation of androgens to oestrogens.

      An oestrogen-secreting tumour is not the correct answer as there is no evidence in Ronald’s history or examination to suggest he has one, although these tumours can cause gynaecomastia in men.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      50.7
      Seconds
  • Question 20 - As a medical student in community care, while shadowing a health visitor, I...

    Incorrect

    • As a medical student in community care, while shadowing a health visitor, I observed her measuring the height and weight of children to monitor their growth. What factors drive growth during the developmental stage of 4 to 10 years old?

      Your Answer: Nutrition and growth hormones

      Correct Answer: Growth and thyroid hormones

      Explanation:

      Understanding Growth and Factors Affecting It

      Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.

      In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.

      In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.

      It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.

    • This question is part of the following fields:

      • Endocrine System
      10.2
      Seconds
  • Question 21 - A 65-year-old man with a medical history of obesity, hypertension, type 2 diabetes...

    Correct

    • A 65-year-old man with a medical history of obesity, hypertension, type 2 diabetes mellitus, and ischaemic heart disease is hospitalized for SARS-CoV-2 infection. He is started on oxygen therapy and a 10-day course of oral dexamethasone. What is the most crucial monitoring strategy following the initiation of this medication?

      Your Answer: Four times daily capillary blood glucose

      Explanation:

      Regular monitoring of capillary blood glucose is recommended when using corticosteroids as they can worsen diabetic control due to their anti-insulin effects. Dexamethasone, a corticosteroid with a high glucocorticoid effect, carries a high risk of hyperglycaemia in patients with or without diabetes. Monitoring blood sugars is essential for patients with diabetes who are started on glucocorticoids. Monitoring cardiac function, daily amylase levels, daily lying and standing blood pressure, and daily urea and electrolytes are not routinely recommended while on corticosteroids. However, these tests may be necessary if suggestive symptoms develop.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      14.3
      Seconds
  • Question 22 - A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for...

    Incorrect

    • A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for evaluation. He is currently on maximum doses of metformin and glibenclamide, but his HbA1c levels have increased from 58 mmol/mol to 67 mmol/mol over the past six months. The consultant recommends adding sitagliptin as a third antidiabetic medication. What is the mechanism of action of this new medication?

      Your Answer: Mimic incretins by binding to GLP-1 receptors and stimulating insulin release

      Correct Answer: Inhibit the peripheral breakdown of incretins, enhancing their ability to stimulate insulin release

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      20.3
      Seconds
  • Question 23 - The acute phase response to injury in elderly patients does not involve which...

    Incorrect

    • The acute phase response to injury in elderly patients does not involve which of the following?

      Your Answer: Increased serum amyloid A

      Correct Answer: Increased transferrin

      Explanation:

      The acute phase response is characterized by various physiological changes, such as the production of acute phase proteins, decreased levels of transport proteins like albumin and transferrin, hepatic retention of cations, fever, an increase in neutrophil count, elevated muscle proteolysis, and alterations in vascular permeability.

      Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.

    • This question is part of the following fields:

      • Endocrine System
      18.3
      Seconds
  • Question 24 - A 23-year-old male comes to his doctor with a 5-month history of headaches,...

    Incorrect

    • A 23-year-old male comes to his doctor with a 5-month history of headaches, palpitations, and excessive sweating. He also mentions unintentional weight loss. Upon examination, the patient is found to be tachycardic and sweating profusely. The doctor suspects that the man may have a tumor affecting the tissue responsible for producing adrenaline.

      What is the probable location of the tumor?

      Your Answer: Adrenal cortex

      Correct Answer: Adrenal medulla

      Explanation:

      The secretion of adrenaline is primarily carried out by the adrenal medulla. A patient with a phaeochromocytoma, a type of cancer that affects the adrenal medulla, may experience symptoms such as tachycardia, headaches, and sweating due to excess adrenaline production.

      The adrenal cortex, which surrounds the adrenal medulla, is not involved in adrenaline synthesis. It is responsible for producing mineralocorticoids, glucocorticoids, and androgens.

      The medulla oblongata, located in the brainstem, regulates essential bodily functions but is not responsible for adrenaline secretion.

      The parathyroid gland, which produces parathyroid hormone to regulate calcium metabolism, is not related to adrenaline secretion.

      The Function of Adrenal Medulla

      The adrenal medulla is responsible for producing almost all of the adrenaline in the body, along with small amounts of noradrenaline. Essentially, it is a specialized and enlarged sympathetic ganglion. This gland plays a crucial role in the body’s response to stress and danger, as adrenaline is a hormone that prepares the body for the fight or flight response. When the body perceives a threat, the adrenal medulla releases adrenaline into the bloodstream, which increases heart rate, blood pressure, and respiration, while also dilating the pupils and increasing blood flow to the muscles. This response helps the body to react quickly and effectively to danger. Overall, the adrenal medulla is an important component of the body’s stress response system.

    • This question is part of the following fields:

      • Endocrine System
      10.3
      Seconds
  • Question 25 - A teenage girl and her mother come to the doctor's office with concerns...

    Incorrect

    • A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. Upon conducting a thorough medical history and various tests, the doctor diagnoses the girl with congenital adrenal hyperplasia. What is the reason for adrenal hyperplasia being a characteristic of this condition?

      Your Answer: Decreased oestrogen synthesis

      Correct Answer: Inefficient cortisol synthesis

      Explanation:

      Low cortisol production and compensatory adrenal hyperplasia are caused by 21-hydroxylase deficiency, leading to increased androgen production and ambiguous genitalia. The enzymes 11-beta hydroxylase and 17-hydroxylase are also involved. Testosterone and estrogen synthesis is not affected as they are produced in the testes and ovaries, respectively. Congenital adrenal hyperplasia is not caused by aldosterone synthesis, despite it occurring in the adrenal cortex.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      16.7
      Seconds
  • Question 26 - Which one of the following does not trigger insulin secretion? ...

    Correct

    • Which one of the following does not trigger insulin secretion?

      Your Answer: Atenolol

      Explanation:

      The release of insulin is prevented by beta blockers.

      Factors that trigger insulin release include glucose, amino acids, vagal cholinergic stimulation, secretin/gastrin/CCK, fatty acids, and beta adrenergic drugs.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      4.4
      Seconds
  • Question 27 - A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood...

    Correct

    • A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood test is requested to check PTH levels, serum calcium, phosphate and vitamin D.

      Which of the following levels also need to be specifically checked?

      Your Answer: Magnesium

      Explanation:

      The correct answer is magnesium, as it is necessary for the secretion and function of parathyroid hormone. Adequate magnesium levels are required for the hormone to have its desired effects. CRP, urea, and platelets are not relevant to this situation and do not need to be tested.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      10
      Seconds
  • Question 28 - A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured...

    Correct

    • A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured urine that have persisted for 3 months. He had a concussion from a car accident a month before the onset of his urinary symptoms. The patient is diagnosed with cranial diabetes insipidus after undergoing several tests.

      What would the water deprivation test likely reveal in this case?

      Your Answer: Low urine osmolality after fluid deprivation, but high after desmopressin

      Explanation:

      The correct answer is low urine osmolality after fluid deprivation, but high after desmopressin, for a patient with cranial diabetes insipidus (DI). This condition is characterized by polyuria, chronic thirst, and pale-coloured urine, and is caused by insufficient antidiuretic hormone (ADH) secretion. As a result, the kidneys are unable to concentrate urine, leading to a low urine osmolality even during water deprivation. However, the kidneys will respond to desmopressin (synthetic ADH) to produce concentrated urine.

      High urine osmolality after both fluid deprivation and desmopressin is incorrect, as it would be seen in a healthy individual or a patient with primary polydipsia, a psychogenic disorder characterized by excessive drinking despite being properly hydrated.

      Low urine osmolality after both fluid deprivation and desmopressin is incorrect, as this is typical of nephrogenic DI, a condition in which the kidneys are insensitive to ADH.

      High urine osmolality after fluid deprivation, but normal after desmopressin is incorrect, as this would not be commonly seen with any pathological state.

      Low urine osmolality after desmopressin, but high after fluid deprivation is incorrect, as this would not be commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      22.2
      Seconds
  • Question 29 - Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic...

    Incorrect

    • Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?

      Your Answer: Aldosterone

      Correct Answer: Secretin

      Explanation:

      The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      9.6
      Seconds
  • Question 30 - A 58-year-old woman arrives at the emergency department complaining of persistent nausea and...

    Correct

    • A 58-year-old woman arrives at the emergency department complaining of persistent nausea and vomiting for the past 4 days. Despite taking cyclizine and metoclopramide, she has not experienced any relief. The patient is currently under palliative care for lung cancer with cerebral metastases.

      Upon consultation with the palliative care team, it is decided to administer a steroid with potent glucocorticoid activity and minimal mineralocorticoid activity.

      What medication is the patient expected to receive?

      Your Answer: Dexamethasone

      Explanation:

      Dexamethasone is the most suitable example of a steroid that has very high glucocorticoid activity and minimal mineralocorticoid activity among the given options.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      10.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (11/30) 37%
Passmed