-
Question 1
Correct
-
Which of the following surgical procedures will have the most significant long-term effect on a patient's calcium metabolism?
Your Answer: Extensive small bowel resection
Explanation:Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A child with severe hydrocephalus is exhibiting a lack of upward gaze. What specific area of the brain is responsible for this impairment?
Your Answer: Inferior colliculi
Correct Answer: Superior colliculi
Explanation:The superior colliculi play a crucial role in upward gaze and are located on both sides of the tectal or quadrigeminal plate. Damage or compression of the superior colliculi, such as in severe hydrocephalus, can result in the inability to look up, known as sunsetting of the eyes.
The optic chiasm serves as the connection between the anterior and posterior optic pathways. The nasal fibers of the optic nerves cross over at the chiasm, leading to monocular visual field deficits with anterior pathway lesions and binocular visual field deficits with posterior pathway lesions.
The lateral geniculate body in the thalamus is where the optic tract connects with the optic radiations, while the inferior colliculi and medial geniculate bodies are responsible for processing auditory stimuli.
Understanding the Diencephalon: An Overview of Brain Anatomy
The diencephalon is a part of the brain that is located between the cerebral hemispheres and the brainstem. It is composed of several structures, including the thalamus, hypothalamus, epithalamus, and subthalamus. Each of these structures plays a unique role in regulating various bodily functions and behaviors.
The thalamus is responsible for relaying sensory information from the body to the cerebral cortex, which is responsible for processing and interpreting this information. The hypothalamus, on the other hand, is involved in regulating a wide range of bodily functions, including hunger, thirst, body temperature, and sleep. It also plays a role in regulating the release of hormones from the pituitary gland.
The epithalamus is a small structure that is involved in regulating the sleep-wake cycle and the production of melatonin, a hormone that helps to regulate sleep. The subthalamus is involved in regulating movement and is part of the basal ganglia, a group of structures that are involved in motor control.
Overall, the diencephalon plays a crucial role in regulating many of the body’s essential functions and behaviors. Understanding its anatomy and function can help us better understand how the brain works and how we can maintain optimal health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Correct
-
A 75-year-old man presents to the ophthalmology clinic with complaints of gradually worsening peripheral vision and a progressive headache that is worse at night. During the cranial nerve exam, a superior homonymous quadrantanopia is observed, but eye movements are intact. The rest of the cranial nerve and neurological examinations are unremarkable.
Which region of the brain is likely affected by the lesion causing these symptoms?Your Answer: Temporal lobe
Explanation:Superior homonymous quadrantanopias occur when there are lesions in the inferior optic radiations located in the temporal lobe. The location of the lesion can be determined by analyzing the pattern of the visual field defect. Lesions in front of the optic chiasm cause incongruous defects, while lesions at the optic chiasm cause bitemporal/binasal hemianopias. Lesions behind the optic chiasm result in homonymous hemianopias, such as the superior homonymous quadrantanopia in this case. The optic radiations carry nerve signals from the optic chiasm to the occipital lobe. Lesions in the inferior aspect of the optic radiation cause superior visual field defects, while lesions in the superior aspect of the optic radiation cause inferior visual field defects. Therefore, the lesion causing the superior homonymous quadrantanopia in this woman must be located in the inferior aspect of the optic radiation in the temporal lobe. Lesions compressing the lateral aspect of the optic chiasm cause nasal/binasal visual field defects, while lesions to the optic nerve before the optic chiasm result in an incongruous homonymous hemianopia affecting the same eye. Parietal lobe lesions can cause inferior homonymous quadrantanopias, but not superior homonymous quadrantanopias. Compression of the superior optic chiasm causes bitemporal hemianopias, not homonymous hemianopias.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Correct
-
During a cranial nerve examination of a 75-year-old female, it is observed that her tongue deviates to the right when she is asked to stick it out. Which cranial nerve could be affected in this case?
Your Answer: Left hypoglossal
Explanation:When the hypoglossal nerve is affected, it can cause the tongue to deviate towards the side of the lesion. This is due to the unopposed action of the genioglossus muscle, which makes up most of the tongue, on the unaffected side. If the patient’s history indicates that their tongue is deviating towards the left, it can be ruled out that the issue is affecting the right cranial nerves. The hypoglossal nerve is responsible for innervating the majority of the tongue’s muscles, including both the extrinsic and intrinsic muscles.
Cranial nerve palsies can present with diplopia, or double vision, which is most noticeable in the direction of the weakened muscle. Additionally, covering the affected eye will cause the outer image to disappear. False localising signs can indicate a pathology that is not in the expected anatomical location. One common example is sixth nerve palsy, which is often caused by increased intracranial pressure due to conditions such as brain tumours, abscesses, meningitis, or haemorrhages. Papilloedema may also be present in these cases.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Correct
-
A 23-year-old man is in a physical altercation and suffers a cut on the back of his wrist. Upon examination in the ER, it is discovered that the laceration runs horizontally over the area of the extensor retinaculum, which remains undamaged. Which of the following structures is the least probable to have been harmed in this situation?
Your Answer: Tendon of extensor indicis
Explanation:The extensor retinaculum starts its attachment to the radius near the styloid and then moves diagonally and downwards to wrap around the ulnar styloid without attaching to it. As a result, the extensor tendons are situated beneath the extensor retinaculum and are less prone to injury compared to the superficial structures.
The Extensor Retinaculum and its Related Structures
The extensor retinaculum is a thick layer of deep fascia that runs across the back of the wrist, holding the long extensor tendons in place. It attaches to the pisiform and triquetral bones medially and the end of the radius laterally. The retinaculum has six compartments that contain the extensor muscle tendons, each with its own synovial sheath.
Several structures are related to the extensor retinaculum. Superficial to the retinaculum are the basilic and cephalic veins, the dorsal cutaneous branch of the ulnar nerve, and the superficial branch of the radial nerve. Deep to the retinaculum are the tendons of the extensor carpi ulnaris, extensor digiti minimi, extensor digitorum, extensor indicis, extensor pollicis longus, extensor carpi radialis longus, extensor carpi radialis brevis, abductor pollicis longus, and extensor pollicis brevis.
The radial artery also passes between the lateral collateral ligament of the wrist joint and the tendons of the abductor pollicis longus and extensor pollicis brevis. Understanding the topography of these structures is important for diagnosing and treating wrist injuries and conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
A 32-year-old woman visits her doctor complaining of a severe, pulsating headache that began last night and is concentrated at the back of her head. She experiences intense pain when coughing. Her family has a history of Type I Chiari malformation.
The doctor suspects idiopathic intracranial hypertension and conducts a fundoscopy to check for signs of papilloedema. Before using an ophthalmoscope to examine her eyes, the doctor applies a topical medication.
What is the name of the medication used?Your Answer: Topical lidocaine
Correct Answer: Tropicamide
Explanation:Tropicamide is administered before fundoscopy to enlarge the pupils. It functions as a muscarinic receptor antagonist, inhibiting parasympathetic impulses and causing the pupil constrictor response and ciliary muscle to become paralyzed. This results in pupil dilation, which is necessary for optimal visualization of the fundus.
Fluorescein stain is utilized to evaluate the cornea for damage or the presence of foreign objects in the eye.
Pilocarpine, a muscarinic receptor agonist, causes pupillary constriction and should not be used before fundoscopy as it would hinder the visualization of the fundus.
Lidocaine is a local anesthetic that works by blocking fast voltage-gated Na channels in the neuronal cell membrane responsible for signal propagation. There is no need to apply topical lidocaine before fundoscopy.
Mydriasis, which is the enlargement of the pupil, can be caused by various factors such as third nerve palsy, Holmes-Adie pupil, traumatic iridoplegia, phaeochromocytoma, and congenital conditions. Additionally, certain drugs like topical mydriatics such as tropicamide and atropine, sympathomimetic drugs like amphetamines and cocaine, and anticholinergic drugs like tricyclic antidepressants can also cause mydriasis. It is important to note that anisocoria, which is the unequal size of pupils, can also lead to apparent mydriasis when compared to the other pupil.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
Which of the following cranial venous sinuses is singular?
Your Answer: Superior sagittal sinus
Explanation:The superior sagittal sinus is a single structure that starts at the crista galli and may connect with the veins of the frontal sinus and nasal cavity. It curves backwards within the falx cerebri and ends at the internal occipital protuberance, typically draining into the right transverse sinus. The parietal emissary veins provide a connection between the superior sagittal sinus and the veins on the outside of the skull.
Overview of Cranial Venous Sinuses
The cranial venous sinuses are a series of veins located within the dura mater, the outermost layer of the brain. Unlike other veins in the body, they do not have valves, which can increase the risk of sepsis spreading. These sinuses eventually drain into the internal jugular vein.
There are several cranial venous sinuses, including the superior sagittal sinus, inferior sagittal sinus, straight sinus, transverse sinus, sigmoid sinus, confluence of sinuses, occipital sinus, and cavernous sinus. Each of these sinuses has a specific location and function within the brain.
To better understand the topography of the cranial venous sinuses, it is helpful to visualize them as a map. The superior sagittal sinus runs along the top of the brain, while the inferior sagittal sinus runs along the bottom. The straight sinus connects the two, while the transverse sinus runs horizontally across the back of the brain. The sigmoid sinus then curves downward and connects to the internal jugular vein. The confluence of sinuses is where several of these sinuses meet, while the occipital sinus is located at the back of the head. Finally, the cavernous sinus is located on either side of the pituitary gland.
Understanding the location and function of these cranial venous sinuses is important for diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 54-year-old factory worker gets his arm caught in a metal grinder and is rushed to the ER. Upon examination, he displays an inability to extend his metacarpophalangeal joints and abduct his shoulder. Additionally, he experiences weakness in his elbow and wrist. What specific injury has occurred?
Your Answer: Lateral cord of brachial plexus
Correct Answer: Posterior cord of brachial plexus
Explanation:Lesion of the posterior cord results in the impairment of the axillary and radial nerve, which are responsible for innervating various muscles such as the deltoid, triceps, brachioradialis, wrist extensors, finger extensors, subscapularis, teres minor, and latissimus dorsi.
Brachial Plexus Cords and their Origins
The brachial plexus cords are categorized based on their position in relation to the axillary artery. These cords pass over the first rib near the lung’s dome and under the clavicle, just behind the subclavian artery. The lateral cord is formed by the anterior divisions of the upper and middle trunks and gives rise to the lateral pectoral nerve, which originates from C5, C6, and C7. The medial cord is formed by the anterior division of the lower trunk and gives rise to the medial pectoral nerve, the medial brachial cutaneous nerve, and the medial antebrachial cutaneous nerve, which originate from C8, T1, and C8, T1, respectively. The posterior cord is formed by the posterior divisions of the three trunks (C5-T1) and gives rise to the upper and lower subscapular nerves, the thoracodorsal nerve to the latissimus dorsi (also known as the middle subscapular nerve), and the axillary and radial nerves.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Correct
-
At which of the following anatomical locations does the common peroneal nerve bifurcate into the superficial and deep peroneal nerves?
Your Answer: At the lateral aspect of the neck of the fibula
Explanation:The point where the common peroneal nerve is most susceptible to injury is at the neck of the fibula, where it divides into two branches.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 45-year-old woman presents with a lesion in the cerebellopontine angle. Which cranial nerve is expected to be affected initially?
Your Answer: CN III
Correct Answer: CN V
Explanation:An acoustic neuroma is the most probable type of lesion to develop in the cerebellopontine angle. The trigeminal nerve is typically affected first, with a wide base of involvement. The initial symptoms may be subtle, such as the loss of the corneal reflex on the same side. Additionally, hearing loss on the same side is likely to occur. If left untreated, the lesion may progress and eventually impact multiple cranial nerve roots in the area.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
After spending 8 weeks in a plaster cast on his left leg, John, a 25-year-old male, visits the clinic to have it removed. During the examination, it is observed that his left foot is in a plantar flexed position, indicating foot drop. Which nerve is typically impacted, resulting in foot drop?
Your Answer:
Correct Answer: Common peroneal nerve
Explanation:Footdrop, which is impaired dorsiflexion of the ankle, can be caused by a lesion of the common peroneal nerve. This nerve is a branch of the sciatic nerve and divides into the deep and superficial peroneal nerves after wrapping around the neck of the fibula. The deep peroneal nerve is responsible for innervating muscles that control dorsiflexion of the foot, such as the tibialis anterior, extensor hallucis longus, and extensor digitorum longus. Damage to the common or deep peroneal nerve can result in weakness or paralysis of these muscles, leading to unopposed plantar flexion of the foot. The superficial peroneal nerve, on the other hand, innervates muscles that evert the foot. Other nerves that innervate muscles in the lower limb include the femoral nerve, which controls hip flexion and knee extension, the tibial nerve, which mainly controls plantar flexion and inversion of the foot, and the obturator nerve, which mainly controls thigh adduction.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
What is the incorrect pairing in the following options?
Your Answer:
Correct Answer: Termination of dural sac and L4
Explanation:Sorry, your input is not clear. Please provide more information or context for me to understand what you want me to do.
Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
A 29-year-old female is being followed up in the epilepsy clinic after switching from lamotrigine to carbamazepine for her generalised tonic-clonic seizures. What is the mechanism of action of her new medication?
Your Answer:
Correct Answer: Binds to sodium channels to increase their refractory period
Explanation:Carbamazepine binds to voltage-gated sodium channels in the neuronal cell membrane, blocking their action in the inactive form. This results in a longer time for the neuron to depolarize, increasing the absolute refractory period and raising the threshold for seizure activity. It does not bind to potassium channels or GABA receptors. Blocking potassium efflux would increase the refractory period, while promoting potassium efflux would hyperpolarize the cell and also increase the refractory period. Benzodiazepines bind allosterically to GABAA receptors, hyperpolarizing the cell and increasing the refractory period.
Understanding Carbamazepine: Uses, Mechanism of Action, and Adverse Effects
Carbamazepine is a medication that is commonly used in the treatment of epilepsy, particularly partial seizures. It is also used to treat trigeminal neuralgia and bipolar disorder. Chemically similar to tricyclic antidepressant drugs, carbamazepine works by binding to sodium channels and increasing their refractory period.
However, there are some adverse effects associated with carbamazepine use. It is known to be a P450 enzyme inducer, which can affect the metabolism of other medications. Patients may also experience dizziness, ataxia, drowsiness, headache, and visual disturbances, especially diplopia. In rare cases, carbamazepine can cause Steven-Johnson syndrome, leucopenia, agranulocytosis, and hyponatremia secondary to syndrome of inappropriate ADH secretion.
It is important to note that carbamazepine exhibits autoinduction, which means that when patients start taking the medication, they may experience a return of seizures after 3-4 weeks of treatment. Therefore, it is crucial for patients to be closely monitored by their healthcare provider when starting carbamazepine.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 35-year-old male is brought to the emergency department after being hit on the side of his head with a car jack. A CT scan reveals a basal skull fracture that involves the jugular foramen. Which cranial nerves are at risk of being affected by this trauma?
Your Answer:
Correct Answer: CN IX, X and XI
Explanation:The jugular foramen is a passageway through which cranial nerves IX, X, and XI as well as the internal jugular vein travel. Any damage or injury to this area is likely to affect these nerves, resulting in a condition known as jugular foramen syndrome or Vernet syndrome. This syndrome is characterized by a combination of cranial nerve palsies caused by compression from a lesion in the jugular foramen.
Foramina of the Skull
The foramina of the skull are small openings in the bones that allow for the passage of nerves and blood vessels. These foramina are important for the proper functioning of the body and can be tested on exams. Some of the major foramina include the optic canal, superior and inferior orbital fissures, foramen rotundum, foramen ovale, and jugular foramen. Each of these foramina has specific vessels and nerves that pass through them, such as the ophthalmic artery and optic nerve in the optic canal, and the mandibular nerve in the foramen ovale. It is important to have a basic understanding of these foramina and their contents in order to understand the anatomy and physiology of the head and neck.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 68-year-old patient is admitted for surgery following a car accident that resulted in a fractured tibia. After 12 hours of the operation, the patient reports experiencing severe pain and tingling sensations. Upon examination, the anterior leg appears red, swollen, and feels cooler than the rest of the limb. The patient's ability to dorsiflex the foot is impaired, and there is a loss of sensation over the first and second toes. The intracompartmental pressure of the anterior leg compartment is 40mmHg. Which nerve is responsible for the patient's abnormal sensations and impaired movement?
Your Answer:
Correct Answer: Deep peroneal nerve
Explanation:The deep peroneal (fibular) nerve is responsible for supplying the anterior leg compartment and runs alongside the anterior tibial artery. It enables dorsiflexion by supplying the extensor muscles of the leg, which explains why the patient is unable to perform this movement. If there is increased pressure in this leg compartment, it can compress this nerve and cause the patient’s symptoms.
The lateral plantar nerve, which is a branch of the tibial nerve, travels in the posterior leg compartment and is unlikely to be affected in this case. Additionally, it supplies the lateral part of the foot and does not contribute to dorsiflexion, so it cannot explain the patient’s symptoms.
The tibial nerve also travels in the posterior compartment of the leg and is unlikely to be affected in this case.
Answer 3 is incorrect because there is no such thing as an anterior tibial nerve; there is only an anterior tibial artery.
The superficial peroneal nerve runs in the lateral compartment of the leg and is responsible for foot eversion and sensation over the lateral dorsum of the foot. If this nerve is compromised, the patient may experience impaired foot eversion and reduced sensation in this area.
The Deep Peroneal Nerve: Origin, Course, and Actions
The deep peroneal nerve is a branch of the common peroneal nerve that originates at the lateral aspect of the fibula, deep to the peroneus longus muscle. It is composed of nerve root values L4, L5, S1, and S2. The nerve pierces the anterior intermuscular septum to enter the anterior compartment of the lower leg and passes anteriorly down to the ankle joint, midway between the two malleoli. It terminates in the dorsum of the foot.
The deep peroneal nerve innervates several muscles, including the tibialis anterior, extensor hallucis longus, extensor digitorum longus, peroneus tertius, and extensor digitorum brevis. It also provides cutaneous innervation to the web space of the first and second toes. The nerve’s actions include dorsiflexion of the ankle joint, extension of all toes (extensor hallucis longus and extensor digitorum longus), and inversion of the foot.
After its bifurcation past the ankle joint, the lateral branch of the deep peroneal nerve innervates the extensor digitorum brevis and the extensor hallucis brevis, while the medial branch supplies the web space between the first and second digits. Understanding the origin, course, and actions of the deep peroneal nerve is essential for diagnosing and treating conditions that affect this nerve, such as foot drop and nerve entrapment syndromes.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Incorrect
-
Which option is false regarding the trigeminal nerve?
Your Answer:
Correct Answer: The posterior scalp is supplied by the trigeminal nerve
Explanation:The blood supply to the posterior scalp is provided by the C2-C3 nerves.
The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
You are asked to clerk a 73-year-old-man who presented with a fall. He was seen by the stroke team who requested a CT head. This excluded an intracranial haemorrhage and he was started on aspirin. When you enter the cubicle, you notice the patient has a right-sided facial droop.
What type of speech disturbance does this patient have? You start taking a history but find it difficult to understand what he says. He is unable to get the words out easily and his speech is non-fluent as if hesitating before uttering the words.
During the cranial nerve examination, he understood and followed your instructions well. However, he is unable to repeat words after you.Your Answer:
Correct Answer: Broca's dysphasia
Explanation:This man experienced a stroke that affected Broca’s area, resulting in Broca’s dysphasia. This condition causes non-fluent speech, but normal comprehension, and impaired repetition. Despite knowing what they want to say, patients with Broca’s dysphasia struggle to articulate their words. They can understand instructions, but have difficulty repeating words. This is different from conductive dysphasia, which presents with fluent speech but an inability to repeat words. Dysarthria, on the other hand, is characterized by difficulty articulating words due to a lack of coordination in the muscles of speech. Global aphasia is the inability to understand, repeat, and produce speech, which was not the case for this patient as they were able to understand instructions.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A 10-year-old boy has been referred to a pediatric neurologist due to a persistent headache for the past two months. Initially, his mother thought it was due to school stress, but the boy has also been experiencing accidents while riding his bike. He has reported an inability to see his friends when they ride next to him. The boy was born via C-section and has had normal development and is doing well in school. Upon examination, the doctor discovered a visual defect where the boy cannot perceive the two temporal visual fields. If this boy undergoes surgery for his condition, which part of his hypothalamus would be affected, causing weight gain after surgery?
Your Answer:
Correct Answer: Ventromedial area of the hypothalamus
Explanation:The child displayed symptoms consistent with a craniopharyngioma, a common brain tumor in children that can be mistaken for a pituitary adenoma due to the presence of bitemporal hemianopia. Craniopharyngiomas originate from the Rathke’s pouch and often invade the pituitary and hypothalamus, particularly the ventromedial area.
1: The ventromedial area of the hypothalamus, along with the paraventricular nucleus, is responsible for synthesizing antidiuretic hormone and oxytocin, which are then stored and released from the posterior hypothalamus.
2: The posterior hypothalamus generates heat to maintain core body temperature.
3: The anterior hypothalamus dissipates heat to cool down the body and prevent a rise in temperature that could harm the body’s internal environment.
4: If the ventromedial area of the hypothalamus is removed during surgery to treat a craniopharyngioma, the patient may experience uninhibited hunger and significant weight gain, as this area controls the satiety center.
5: The supraoptic nucleus, along with the aforementioned ventromedial area, is responsible for synthesizing antidiuretic hormone and oxytocin, which are stored and released from the posterior hypothalamus.Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 57-year-old woman arrives at the emergency department after experiencing a generalized tonic clonic seizure. Routine laboratory tests come back normal, but a CT scan of the brain with contrast shows a densely enhancing, well-defined extra-axial mass attached to the dural layer. If a biopsy of the mass were to be performed, what is the most probable histological finding?
Your Answer:
Correct Answer: Spindle cells in concentric whorls and calcified psammoma bodies
Explanation:The characteristic histological findings of spindle cells in concentric whorls and calcified psammoma bodies are indicative of meningiomas, which are the most likely brain tumor in the given scenario. Meningiomas are typically asymptomatic due to their location outside the brain tissue, and are more commonly found in middle-aged females. They are described as masses with distinct margins, homogenous contrast uptake, and dural attachment. Psammoma bodies can also be found in other tumors such as papillary thyroid cancer, serous cystadenomas of the ovary, and mesotheliomas. The other answer choices are incorrect as they are associated with different types of brain tumors such as vestibular schwannomas, oligodendrogliomas, ependymomas, and glioblastoma multiform.
Brain tumours can be classified into different types based on their location, histology, and clinical features. Metastatic brain cancer is the most common form of brain tumours, which often cannot be treated with surgical intervention. Glioblastoma multiforme is the most common primary tumour in adults and is associated with a poor prognosis. Meningioma is the second most common primary brain tumour in adults, which is typically benign and arises from the arachnoid cap cells of the meninges. Vestibular schwannoma is a benign tumour arising from the eighth cranial nerve, while pilocytic astrocytoma is the most common primary brain tumour in children. Medulloblastoma is an aggressive paediatric brain tumour that arises within the infratentorial compartment, while ependymoma is commonly seen in the 4th ventricle and may cause hydrocephalus. Oligodendroma is a benign, slow-growing tumour common in the frontal lobes, while haemangioblastoma is a vascular tumour of the cerebellum. Pituitary adenoma is a benign tumour of the pituitary gland that can be either secretory or non-secretory, while craniopharyngioma is a solid/cystic tumour of the sellar region that is derived from the remnants of Rathke’s pouch.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 79-year-old man comes to the emergency department with visual disturbance and weakness on the left side. During the examination, you observe that his left leg has a power of 4/5 on the MRC scale, and his left arm has a power of 3/5. Additionally, you notice that he has lost the left half of his visual field in both eyes. Which artery is most likely responsible for his symptoms?
Your Answer:
Correct Answer: Right middle cerebral artery
Explanation:The correct answer is the right middle cerebral artery. This type of stroke can cause contralateral hemiparesis and sensory loss, with the upper extremity being more affected than the lower, as well as contralateral homonymous hemianopia and aphasia. In this case, the patient is experiencing left-sided weakness and left homonymous hemianopia, which would be explained by a stroke affecting the right middle cerebral artery. The other options are incorrect as they do not match the symptoms described in the question.
Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.
Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 27-year-old man comes to the hospital complaining of lower leg weakness and difficulty walking for the past two days. He had a recent episode of bloody diarrhea that was treated with oral ciprofloxacin after testing positive for Campylobacter jejuni.
During the examination, the patient is fully alert and conscious. Neurological examination reveals reduced deep tendon reflexes and decreased tone in both lower legs up to the knee level. However, his sensation is intact, and there is no evidence of cartilage or tendon damage.
What is the likely cause of the patient's diagnosis?Your Answer:
Correct Answer: Autoimmunity
Explanation:The correct cause of Guillain-Barre syndrome is autoimmunity, not an inherited neurological disorder, medication side effect, or nutritional deficiency. While it is often triggered by infection with Campylobacter jejuni, the syndrome is characterized by immune-mediated demyelination of peripheral nerves that occurs a few weeks after the trigger. Symptoms are bilateral, ascending, and symmetric, and can lead to respiratory failure and death if respiratory muscles are affected. Charcot-Marie-Tooth disease is an example of an inherited motor and sensory disorder affecting peripheral nerves, while B12 deficiency can lead to subacute combined degeneration of the cord. However, these conditions are not related to Guillain-Barre syndrome. Additionally, while ciprofloxacin can cause tendon damage or rupture in animal studies, this is rare in adults and not relevant to the patient’s symptoms.
Understanding Guillain-Barre Syndrome and Miller Fisher Syndrome
Guillain-Barre syndrome is a condition that affects the peripheral nervous system and is often triggered by an infection, particularly Campylobacter jejuni. The immune system attacks the myelin sheath that surrounds nerve fibers, leading to demyelination. This results in symptoms such as muscle weakness, tingling sensations, and paralysis.
The pathogenesis of Guillain-Barre syndrome involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. Studies have shown a correlation between the presence of anti-ganglioside antibodies, particularly anti-GM1 antibodies, and the clinical features of the syndrome. In fact, anti-GM1 antibodies are present in 25% of patients with Guillain-Barre syndrome.
Miller Fisher syndrome is a variant of Guillain-Barre syndrome that is characterized by ophthalmoplegia, areflexia, and ataxia. This syndrome typically presents as a descending paralysis, unlike other forms of Guillain-Barre syndrome that present as an ascending paralysis. The eye muscles are usually affected first in Miller Fisher syndrome. Studies have shown that anti-GQ1b antibodies are present in 90% of cases of Miller Fisher syndrome.
In summary, Guillain-Barre syndrome and Miller Fisher syndrome are conditions that affect the peripheral nervous system and are often triggered by infections. The pathogenesis of these syndromes involves the cross-reaction of antibodies with gangliosides in the peripheral nervous system. While Guillain-Barre syndrome is characterized by muscle weakness and paralysis, Miller Fisher syndrome is characterized by ophthalmoplegia, areflexia, and ataxia.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Incorrect
-
At what level does the inferior vena cava exit the abdominal cavity?
Your Answer:
Correct Answer: T8
Explanation:Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Incorrect
-
A mother brings her 6-year-old daughter into hospital worried that she is slower than the other girls when standing up. Upon further inquiry, the mother discloses that her daughter walks in an unusual manner and that her grandmother passed away when she was very young. What is the probable cause of the young girl's condition?
Your Answer:
Correct Answer: Mutation in the gene coding for dystrophin
Explanation:Duchenne muscular dystrophy (DMD) is characterised by a waddling gait and Gower’s sign, and follows an X-linked recessive pattern of inheritance. Cystic fibrosis is caused by improper chloride ion channel formation, myasthenia gravis by an autoimmune process against acetylcholine receptors, phenylketonuria by a lack of phenylalanine breakdown, and sickle cell anaemia by a mutation in the gene coding for haemoglobin.
Dystrophinopathies are a group of genetic disorders that are inherited in an X-linked recessive manner. These disorders are caused by mutations in the dystrophin gene located on the X chromosome at position Xp21. Dystrophin is a protein that is part of a larger membrane-associated complex in muscle cells. It connects the muscle membrane to actin, which is a component of the muscle cytoskeleton.
Duchenne muscular dystrophy is a severe form of dystrophinopathy that is caused by a frameshift mutation in the dystrophin gene. This mutation results in the loss of one or both binding sites, leading to progressive proximal muscle weakness that typically begins around the age of 5 years. Children with Duchenne muscular dystrophy may also exhibit calf pseudohypertrophy and Gower’s sign, which is when they use their arms to stand up from a squatted position. Approximately 30% of patients with Duchenne muscular dystrophy also have intellectual impairment.
In contrast, Becker muscular dystrophy is a milder form of dystrophinopathy that typically develops after the age of 10 years. It is caused by a non-frameshift insertion in the dystrophin gene, which preserves both binding sites. Intellectual impairment is much less common in individuals with Becker muscular dystrophy.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast removed from her lower limb. During the examination, it is observed that her right foot is in a plantar flexed position, indicating foot drop.
The physician proceeds to assess the sensation in Sarah's lower limb and feet and discovers a reduction in the area innervated by the deep fibular nerve.
What specific region of Sarah's lower limb or foot is likely to be impacted by this condition?Your Answer:
Correct Answer: Webspace between the first and second toes
Explanation:The webbing between the first and second toes is innervated by the deep fibular nerve. The saphenous nerve, which arises from the femoral nerve, provides cutaneous innervation to the medial aspect of the leg. The sural nerve, which arises from the common fibular and tibial nerves, innervates the lateral foot. The majority of innervation to the dorsum of the foot comes from the superficial fibular nerve.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Incorrect
-
A 25-year-old male presents for a follow-up appointment. He sustained a crush injury to his arm at work six weeks ago and was diagnosed with axonotmesis. The patient is eager to return to work and asks when he can expect the numbness in his arm to go away.
What guidance should you provide to the patient?Your Answer:
Correct Answer: This type of injury usually recovers fully but can take up to a year
Explanation:When a nerve is crushed, it can result in axonotmesis, which is a type of injury where both the axon and myelin sheath are damaged, but the nerve remains intact. Fortunately, axonotmesis injuries usually heal completely, although the process can be slow. The amount of time it takes for the nerve to heal depends on the severity and location of the injury, but typically, axons regenerate at a rate of 1mm per day and can take anywhere from three months to a year to fully recover. It’s not uncommon to experience residual numbness up to four weeks after the injury, but there’s usually no need for further testing at this point. While amitriptyline can help with pain relief, it doesn’t speed up the healing process. In contrast, neurotmesis injuries are more severe and can result in permanent nerve damage. However, in most cases of axonotmesis, full recovery is possible with time. Neuropraxia is a less severe type of nerve injury where the axon is not damaged, and healing typically occurs within six to eight weeks.
Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.
Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
A 65-year-old man presents to the emergency department with a sudden onset of weakness and sensory loss on the right side of his body that started 2 hours ago. He reports difficulty walking due to more pronounced leg weakness than arm weakness, but denies any changes in vision or speech. The patient has a medical history of type 2 diabetes and hypertension and is currently taking metformin and ramipril for these conditions.
Imaging is immediately performed, and treatment for his condition is initiated.
What is the likely location of the lesion based on the given information?Your Answer:
Correct Answer: Left anterior cerebral artery
Explanation:The correct answer is the left anterior cerebral artery. The patient is experiencing a stroke on the right side of their body, with the lower extremity being more affected than the upper. This indicates that the anterior cerebral artery is affected, specifically on the left side as the symptoms are affecting the right side of the body.
The other options are incorrect. If the middle cerebral artery was affected, the upper extremities would be more affected than the lower. If the right anterior cerebral artery was affected, the left side of the brain would be affected. If the right middle cerebral artery was affected, there would be more weakness in the upper extremities and the left side of the body would be affected.
Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.
Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A 52-year-old woman arrives at the emergency department with a complaint of the most intense headache she has ever experienced. The pain came on suddenly, and there is no history of trauma. She is feeling nauseated, sensitive to light, and extremely anxious. Based on her symptoms, you suspect a subarachnoid hemorrhage. You order an urgent CT scan, but it shows no abnormalities. To obtain a sample of cerebrospinal fluid (CSF), you perform a lumbar puncture. What is the primary structure responsible for producing CSF?
Your Answer:
Correct Answer: Choroid plexus
Explanation:The choroid plexus is a branching structure resembling sea coral that contains specialized ependymal cells responsible for producing and releasing cerebrospinal fluid (CSF). It is present in all four ventricles of the brain, with the largest portion located in the lateral ventricles. The choroid plexus plays a role in removing waste products from the CSF.
The inferior colliculus is a nucleus in the midbrain involved in the auditory pathway. There are two inferior colliculi, one on each side of the midbrain, and they are part of the corpora quadrigemina along with the two superior colliculi (involved in the visual pathway).
Arachnoid villi are microscopic projections of the arachnoid membrane that allow for the absorption of cerebrospinal fluid into the venous system. This is important as the amount of CSF produced each day is four times the total volume of the ventricular system.
The corpus callosum is a bundle of nerve fibers that connects the left and right hemispheres of the brain, allowing for communication between them.
The pineal gland is a small protrusion on the brain that produces melatonin and regulates the sleep cycle.
A sudden-onset severe headache, described as the worst ever experienced, may indicate a subarachnoid hemorrhage. This can occur with or without trauma and is characterized by a thunderclap headache. If a CT scan is normal, CSF should be examined for xanthochromia, which is a yellow coloration that occurs several hours after a subarachnoid hemorrhage due to the breakdown of red blood cells and the release of bilirubin into the CSF.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 38-year-old man visits his doctor with worries of having spinal muscular atrophy, as his father has been diagnosed with the condition. He asks for a physical examination.
What physical exam finding is indicative of the characteristic pattern observed in this disorder?Your Answer:
Correct Answer: Reduced reflexes
Explanation:Lower motor neuron lesions, such as spinal muscular atrophy, result in reduced reflexes and tone. Babinski’s sign is negative in these cases. Increased reflexes and tone are indicative of an upper motor neuron cause of symptoms, which may be seen in conditions such as stroke or Parkinson’s disease. Therefore, normal reflexes and tone are also incorrect findings in lower motor neuron lesions.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
Samantha, a 65-year-old woman, was admitted to the hospital following a fall at home. After various tests, Samantha was diagnosed with a stroke and commenced on the appropriate medical treatment. Although some of her symptoms have improved, Samantha is experiencing difficulty with communication. She can speak, but her words do not make sense, and she cannot comprehend when others try to communicate with her. The specialist suspects Wernicke's aphasia.
Which area of the brain would be affected to cause this presentation?Your Answer:
Correct Answer: Temporal lobe
Explanation:Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
What is the most frequent brain tumour in children?
Your Answer:
Correct Answer: Astrocytoma
Explanation:While astrocytoma is the most prevalent brain tumor in children, glioblastoma multiforme is a rare occurrence. Additionally, medulloblastoma is no longer the primary CNS tumor in children, according to Cancer Research UK.
Understanding CNS Tumours: Types, Diagnosis, and Treatment
CNS tumours can be classified into different types, with glioma and metastatic disease accounting for 60% of cases, followed by meningioma at 20%, and pituitary lesions at 10%. In paediatric practice, medulloblastomas used to be the most common lesions, but astrocytomas now make up the majority. The location of the tumour can affect the onset of symptoms, with those in the speech and visual areas producing early symptoms, while those in the right temporal and frontal lobe may reach considerable size before becoming symptomatic.
Diagnosis of CNS tumours is best done through MRI scanning, which provides the best resolution. Treatment usually involves surgery, even if the tumour cannot be completely resected. Tumour debulking can address conditions such as rising ICP and prolong survival and quality of life. Curative surgery is possible for lesions such as meningiomas, but gliomas have a marked propensity to invade normal brain tissue, making complete resection nearly impossible.
Overall, understanding the types, diagnosis, and treatment of CNS tumours is crucial in managing these conditions and improving patient outcomes. With the right approach, patients can receive timely and effective treatment that addresses their symptoms and improves their quality of life.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)