00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 68-year-old woman arrives at the emergency department with complaints of shortness of...

    Correct

    • A 68-year-old woman arrives at the emergency department with complaints of shortness of breath and palpitations. During the examination, you observe an irregularly irregular pulse. To check for signs of atrial fibrillation, you opt to conduct an ECG. In a healthy individual, where is the SA node located in the heart?

      Your Answer: Right atrium

      Explanation:

      The SA node is situated at the junction of the superior vena cava and the right atrium, and is responsible for initiating cardiac impulses in a healthy heart. The AV node, located in the atrioventricular septum, regulates the spread of excitation from the atria to the ventricles. The patient’s symptoms of palpitations and shortness of breath, along with an irregularly irregular pulse, strongly indicate atrial fibrillation. ECG findings consistent with atrial fibrillation include an irregularly irregular rhythm and the absence of P waves.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      30
      Seconds
  • Question 2 - A 78-year-old woman with a history of heart failure visits the clinic complaining...

    Incorrect

    • A 78-year-old woman with a history of heart failure visits the clinic complaining of constipation that has lasted for 5 days. Upon further inquiry, she mentions feeling weaker than usual this week and experiencing regular muscle cramps. During the examination, you observe reduced tone and hyporeflexia in both her upper and lower limbs. You suspect that her symptoms may be caused by hypokalaemia, which could be related to the diuretics she takes to manage her heart failure. Which of the following diuretics is known to be associated with hypokalaemia?

      Your Answer: Spironolactone

      Correct Answer: Furosemide

      Explanation:

      Hypokalaemia is a potential side effect of loop diuretics such as furosemide. In contrast, potassium-sparing diuretics like spironolactone, triamterene, eplerenone, and amiloride are more likely to cause hyperkalaemia. The patient in the scenario is experiencing symptoms suggestive of hypokalaemia, including muscle weakness, cramps, and constipation. Hypokalaemia can also cause fatigue, myalgia, hyporeflexia, and in rare cases, paralysis.

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      36
      Seconds
  • Question 3 - A 79-year-old man is admitted to the hospital after experiencing severe dizziness, vertigo,...

    Incorrect

    • A 79-year-old man is admitted to the hospital after experiencing severe dizziness, vertigo, slurred speech, and nausea with vomiting. The diagnosis reveals a basilar artery stroke. Which blood vessels combine to form the affected artery?

      Your Answer: Pontine arteries

      Correct Answer: Vertebral arteries

      Explanation:

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      24.3
      Seconds
  • Question 4 - Which of the following is not a hepatic artery branch? ...

    Incorrect

    • Which of the following is not a hepatic artery branch?

      Your Answer: Right gastric artery

      Correct Answer: Pancreatic artery

      Explanation:

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      4.1
      Seconds
  • Question 5 - A 67-year-old male arrives at the emergency department complaining of crushing chest pain,...

    Incorrect

    • A 67-year-old male arrives at the emergency department complaining of crushing chest pain, sweating, and palpitations. Upon examination, an ECG reveals ST elevation in leads V1-V4, indicating a myocardial infarction. Which coronary artery is most likely blocked?

      Your Answer: Posterior descending artery

      Correct Answer: Anterior descending artery

      Explanation:

      Anteroseptal myocardial infarction is typically caused by blockage of the left anterior descending artery. This is supported by the patient’s symptoms and ST segment elevation in leads V1-V4, which correspond to the territory supplied by this artery. Other potential occlusions, such as the left circumflex artery, left marginal artery, posterior descending artery, or right coronary artery, would cause different changes in specific leads.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      48.3
      Seconds
  • Question 6 - In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly...

    Correct

    • In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.

      What ion influx causes this rapid depolarisation?

      Your Answer: Na+

      Explanation:

      Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      6.5
      Seconds
  • Question 7 - A 76-year-old male comes for his yearly checkup with the heart failure nurses....

    Incorrect

    • A 76-year-old male comes for his yearly checkup with the heart failure nurses. What is the leading cause of heart failure?

      Your Answer: COPD

      Correct Answer: Ischaemic heart disease

      Explanation:

      The leading cause of heart failure in the western world is ischaemic heart disease, followed by high blood pressure, cardiomyopathies, arrhythmias, and heart valve issues. While COPD can be linked to cor pulmonale, which is a type of right heart failure, it is still not as prevalent as ischaemic heart disease as a cause. This information is based on a population-based study titled Incidence and Aetiology of Heart Failure published in the European Heart Journal in 1999.

      Diagnosis of Chronic Heart Failure

      Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.

      Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.

      BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.

      It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.

    • This question is part of the following fields:

      • Cardiovascular System
      39.2
      Seconds
  • Question 8 - A 65-year-old man presents to the vascular clinic with bilateral buttock claudication that...

    Incorrect

    • A 65-year-old man presents to the vascular clinic with bilateral buttock claudication that spreads down the thigh and erectile dysfunction. The vascular surgeon is unable to palpate his left femoral pulse and the right is weakly palpable. The patient is diagnosed with Leriche syndrome, which is caused by atherosclerotic occlusion of blood flow at the abdominal aortic bifurcation. He has been consented for aorto-iliac bypass surgery and is currently awaiting the procedure.

      What is the vertebral level of the affected artery that requires bypassing?

      Your Answer: T12

      Correct Answer: L4

      Explanation:

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      17.9
      Seconds
  • Question 9 - A 57-year-old man has recently passed away in hospital after being admitted with...

    Incorrect

    • A 57-year-old man has recently passed away in hospital after being admitted with acute shortness of breath upon exertion and bilateral pedal pitting edema. He is known to be suffering from congestive heart failure for the past 5 years.

      His medical history includes well-controlled hypertension, mitral insufficiency and a complicated sore throat as a child. He has no significant past family history. There is no previous history of any heart surgery or interventional procedures. The pathology report confirms the findings of granulomatous nodules consisting of giant cells around areas of fibrinoid necrosis in the heart of the patient.

      What is the causative agent for the pathology described in the heart of this patient?

      Your Answer: Streptococcus viridans

      Correct Answer: Streptococcus pyogenes

      Explanation:

      Aschoff bodies, which are granulomatous nodules consisting of giant cells around areas of fibrinoid necrosis, are pathognomonic for rheumatic heart disease. This condition is often a sequela of acute rheumatic heart fever, which occurs due to molecular mimicry where antibodies to the bacteria causing a pharyngeal infection react with the cardiac myocyte antigen resulting in valve destruction. The bacterial organism responsible for the pharyngeal infection leading to rheumatic heart disease is the group A β-hemolytic Streptococcus pyogenes.

      In contrast, Staphylococcus aureus is a gram-positive, coagulase-positive bacteria that often causes acute bacterial endocarditis with large vegetations on previously normal cardiac valves. Bacterial endocarditis typically presents with a fever and new-onset murmur, and may be associated with other signs such as Roth spots, Osler nodes, Janeway lesions, and splinter hemorrhages. Staphylococcus epidermidis, on the other hand, is a gram-positive, coagulase-negative bacteria that often causes bacterial endocarditis on prosthetic valves. Streptococcus viridans, a gram-positive, α-hemolytic bacteria, typically causes subacute bacterial endocarditis in individuals with a diseased or previously abnormal valve, with smaller vegetations compared to acute bacterial endocarditis.

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      10.9
      Seconds
  • Question 10 - A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at...

    Incorrect

    • A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at the scene. A post-mortem examination is carried out to determine the cause of death, which demonstrates 90% stenosis of the left anterior descending artery.

      What is the ultimate stage in the development of this stenosis?

      Your Answer: Endothelial dysfunction triggered by smoking, hypertension or hyperglycaemia

      Correct Answer: Smooth muscle proliferation and migration from the tunica media into the intima

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      31
      Seconds
  • Question 11 - A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination,...

    Incorrect

    • A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination, her ECG reveals tall tented T waves. What causes the distinctive shape of the T wave, which corresponds to phase 3 of the cardiac action potential?

      Your Answer: Slow depolarisation due to influx of sodium

      Correct Answer: Repolarisation due to efflux of potassium

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      43.7
      Seconds
  • Question 12 - A 59-year-old man presents to the emergency department with pleuritic thoracic pain and...

    Incorrect

    • A 59-year-old man presents to the emergency department with pleuritic thoracic pain and fever. His medical history includes an inferior STEMI that occurred 3 weeks ago. During auscultation, a pericardial rub is detected, and his ECG shows diffuse ST segment elevation and PR segment depression. What is the complication of myocardial infarction that the patient is experiencing?

      Your Answer: Left ventricular aneurysm

      Correct Answer: Dressler syndrome

      Explanation:

      The patient’s symptoms strongly suggest Dressler syndrome, which is an autoimmune-related inflammation of the pericardium that typically occurs 2-6 weeks after a heart attack. This condition is characterized by fever, pleuritic pain, and diffuse ST elevation and PR depression on an electrocardiogram. A pleural friction rub can also be heard during a physical exam.

      While another heart attack is a possibility, the absence of diffuse ST elevation and the presence of a pleural friction rub make this diagnosis less likely.

      A left ventricular aneurysm would present with persistent ST elevation but no chest pain.

      Ventricular free wall rupture typically occurs 1-2 weeks after a heart attack and would present with acute heart failure due to cardiac tamponade, which is characterized by raised jugular venous pressure, pulsus paradoxus, and diminished heart sounds.

      A ventricular septal defect usually occurs within the first week and would present with acute heart failure and a pansystolic murmur.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      51.3
      Seconds
  • Question 13 - A patient in their 60s is diagnosed with first-degree heart block which is...

    Incorrect

    • A patient in their 60s is diagnosed with first-degree heart block which is shown on their ECG by an elongated PR interval. The PR interval relates to a particular period in the electrical conductance of the heart.

      What factors could lead to a decrease in the PR interval?

      Your Answer: Decreased conduction velocity of the SA node

      Correct Answer: Increased conduction velocity across the AV node

      Explanation:

      An increase in sympathetic activation leads to a faster heart rate by enhancing the conduction velocity of the AV node. The PR interval represents the time between the onset of atrial depolarization (P wave) and the onset of ventricular depolarization (beginning of QRS complex). While atrial conduction occurs at a speed of 1m/s, the AV node only conducts at 0.05m/s. Consequently, the AV node is the limiting factor, and a reduction in the PR interval is determined by the conduction velocity across the AV node.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      11.7
      Seconds
  • Question 14 - A 44-year-old woman presents with varicose veins and has a saphenofemoral disconnection, long...

    Correct

    • A 44-year-old woman presents with varicose veins and has a saphenofemoral disconnection, long saphenous vein stripping to the ankle, and isolated hook phlebectomies. After the surgery, she experiences numbness above her ankle. What is the probable reason for this?

      Your Answer: Saphenous nerve injury

      Explanation:

      Full length stripping of the long saphenous vein below the knee is no longer recommended due to its relation to the saphenous nerve, while the short saphenous vein is related to the sural nerve.

      The Anatomy of Saphenous Veins

      The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.

      On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.

      Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.

    • This question is part of the following fields:

      • Cardiovascular System
      18.4
      Seconds
  • Question 15 - Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and...

    Incorrect

    • Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and swollen ankles that have been worsening for the past four months. During the consultation, the doctor observes that Sarah is using more pillows than usual. She has a medical history of hypertension, hypercholesterolemia, type 2 diabetes mellitus, and a previous myocardial infarction. The doctor also notices a raised jugular venous pressure (JVP) and suspects congestive heart failure. What would indicate a normal JVP?

      Your Answer: 5cm from the vertical height above the sternal angle

      Correct Answer: 2 cm from the vertical height above the sternal angle

      Explanation:

      The normal range for jugular venous pressure is within 3 cm of the vertical height above the sternal angle. This measurement is used to estimate central venous pressure by observing the internal jugular vein, which connects to the right atrium. To obtain this measurement, the patient is positioned at a 45º angle, the right internal jugular vein is observed between the two heads of sternocleidomastoid, and a ruler is placed horizontally from the highest pulsation point of the vein to the sternal angle, with an additional 5cm added to the measurement. A JVP measurement greater than 3 cm from the sternal angle may indicate conditions such as right-sided heart failure, cardiac tamponade, superior vena cava obstruction, or fluid overload.

      Understanding the Jugular Venous Pulse

      The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.

      The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.

      Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      15.8
      Seconds
  • Question 16 - A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of...

    Incorrect

    • A 67-year-old man is scheduled for surgery to treat transitional cell carcinoma of the left kidney. During the procedure, the surgeon needs to locate and dissect the left renal artery. Can you identify the vertebral level where the origin of this artery can be found?

      Your Answer: L3

      Correct Answer: L1

      Explanation:

      The L1 level is where the left renal artery is located.

      Located just below the superior mesenteric artery at L1, the left renal artery arises from the abdominal aorta. It is positioned slightly lower than the right renal artery.

      At the T10 vertebral level, the vagal trunk accompanies the oesophagus as it passes through the diaphragm.

      The T12 vertebral level marks the point where the aorta passes through the diaphragm, along with the thoracic duct and azygous veins. Additionally, this is where the coeliac trunk branches out.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      16.8
      Seconds
  • Question 17 - A 55-year-old man is scheduled for CABG surgery and your consultant has tasked...

    Incorrect

    • A 55-year-old man is scheduled for CABG surgery and your consultant has tasked you, a foundation doctor on the surgical ward, with explaining the procedure to him. You are aware that the bypass will involve using the left internal thoracic artery to supply the affected coronary vessel. Can you identify the artery from which the left internal thoracic artery arises?

      Your Answer:

      Correct Answer: Left subclavian artery

      Explanation:

      The left internal thoracic artery originates from the left subclavian artery near its source and runs down the chest wall beneath the ribs to supply blood to the front of the chest and breasts. During coronary artery bypass grafting (CABG), the proximal portion of the ITA is preserved while the distal end is grafted beyond the atherosclerotic segment of the affected coronary vessel to restore blood flow to the heart.

      The left axillary artery is a continuation of the left subclavian artery and is referred to as the axillary artery beyond the lateral border of the first rib. It becomes the brachial artery after passing the lower border of the teres major muscle.

      The left common carotid artery emerges from the aortic arch and divides into the internal and external carotid arteries at the fourth cervical vertebrae.

      The aortic arch is a continuation of the ascending aorta and branches off into the right brachiocephalic trunk, the left common carotid artery, and the left subclavian artery before continuing as the descending aorta.

      The thyrocervical trunk, which arises from the subclavian artery, is a brief vessel that gives rise to four branches: the inferior thyroid artery, suprascapular artery, ascending cervical artery, and transverse cervical artery.

      Coronary Artery Bypass Grafting (CABG)

      Coronary artery bypass grafting (CABG) is a surgical procedure commonly used to treat coronary artery disease. The procedure involves using multiple grafts, with the internal mammary artery being increasingly used instead of the saphenous vein due to its lower likelihood of narrowing. The surgery requires the use of a heart-lung bypass machine and systemic anticoagulation. Suitability for the procedure is determined by cardiac catheterisation or angiography. The surgery is carried out under general anaesthesia, and patients typically stay in the hospital for 7-10 days, with a return to work within 3 months.

      Complications of CABG include atrial fibrillation (30-40% of cases, usually self-limiting) and stroke (2%). However, the prognosis for the procedure is generally positive, with 90% of operations being successful. Further revascularisation may be needed in 5-10% of cases after 5 years, but the mortality rate is low, at 1-2% at 30 days.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - Which one of the following is typically not provided by the right coronary...

    Incorrect

    • Which one of the following is typically not provided by the right coronary artery?

      Your Answer:

      Correct Answer: The circumflex artery

      Explanation:

      The left coronary artery typically gives rise to the circumflex artery.

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A 13-year-old boy collapses at home and is taken to the hospital. After...

    Incorrect

    • A 13-year-old boy collapses at home and is taken to the hospital. After all tests come back normal, what is the underlying mechanism behind a vasovagal episode?

      Your Answer:

      Correct Answer: Peripheral vasodilation and venous pooling

      Explanation:

      Vasovagal syncope is a common type of fainting that is often seen in adolescents and older adults. It typically occurs when a person with a predisposition to this condition is exposed to a specific trigger. Before losing consciousness, the individual may experience symptoms such as lightheadedness, nausea, sweating, or ringing in the ears. When they faint, they fall down, which helps restore blood flow to the brain by eliminating the effects of gravity and allowing the person to regain consciousness.

      The mechanism behind a vasovagal episode involves a cardioinhibitory response that causes a decrease in heart rate (negative chronotropic effect) and contractility (negative inotropic effect), leading to a reduction in cardiac output and peripheral vasodilation. These effects result in the pooling of blood in the lower limbs.

      Understanding Syncope: Causes and Evaluation

      Syncope is a temporary loss of consciousness caused by a sudden decrease in blood flow to the brain. It is a common condition that can affect people of all ages. Syncope can be caused by various factors, including reflex syncope, orthostatic syncope, and cardiac syncope. Reflex syncope is the most common cause of syncope in all age groups, while orthostatic and cardiac causes become more common in older patients.

      Reflex syncope is triggered by emotional stress, pain, or other stimuli. Situational syncope can be caused by coughing, urination, or gastrointestinal issues. Carotid sinus syncope is another type of reflex syncope that occurs when pressure is applied to the carotid artery in the neck.

      Orthostatic syncope occurs when a person stands up too quickly, causing a sudden drop in blood pressure. This can be caused by primary or secondary autonomic failure, drug-induced factors, or volume depletion.

      Cardiac syncope is caused by arrhythmias, structural issues, or pulmonary embolism. Bradycardias and tachycardias are common types of arrhythmias that can cause syncope.

      To diagnose syncope, doctors may perform a cardiovascular examination, postural blood pressure readings, an ECG, carotid sinus massage, tilt table test, or a 24-hour ECG. These tests can help determine the underlying cause of syncope and guide treatment options.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 67-year-old man is admitted for a below knee amputation. He is taking...

    Incorrect

    • A 67-year-old man is admitted for a below knee amputation. He is taking digoxin. The patient presents with an irregularly irregular pulse. What would be your expectation when examining the jugular venous pressure?

      Your Answer:

      Correct Answer: Absent a waves

      Explanation:

      The pressure in the jugular vein.

      Understanding Jugular Venous Pressure

      Jugular venous pressure (JVP) is a useful tool for assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information about the heart’s function. A non-pulsatile JVP may indicate superior vena caval obstruction, while Kussmaul’s sign describes a paradoxical rise in JVP during inspiration seen in constrictive pericarditis.

      The ‘a’ wave of the jugular vein waveform represents atrial contraction. A large ‘a’ wave may indicate conditions such as tricuspid stenosis, pulmonary stenosis, or pulmonary hypertension. However, an absent ‘a’ wave is common in atrial fibrillation.

      Cannon ‘a’ waves are caused by atrial contractions against a closed tricuspid valve. They are seen in conditions such as complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve. Giant ‘v’ waves may indicate tricuspid regurgitation.

      Finally, the ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve. Understanding the jugular venous pressure waveform can provide valuable insights into the heart’s function and help diagnose underlying conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (6/16) 38%
Passmed