00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination,...

    Incorrect

    • A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination, her ECG reveals tall tented T waves. What causes the distinctive shape of the T wave, which corresponds to phase 3 of the cardiac action potential?

      Your Answer: Fast depolarisation due to influx of potassium

      Correct Answer: Repolarisation due to efflux of potassium

      Explanation:

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      24.5
      Seconds
  • Question 2 - A 78-year-old woman has recently been diagnosed with heart failure following 10 months...

    Incorrect

    • A 78-year-old woman has recently been diagnosed with heart failure following 10 months of progressive breathlessness and swelling in her ankles. She has been prescribed several medications and provided with lifestyle recommendations. What are the two types of infections that she is most susceptible to due to her recent diagnosis?

      Your Answer: Myocarditis and hepatitis

      Correct Answer: Chest infections and ulcerated cellulitic legs

      Explanation:

      As a result of the volume overload caused by heart failure, she will have a higher susceptibility to chest infections due to pulmonary edema and leg infections due to peripheral edema.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      13.4
      Seconds
  • Question 3 - A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty...

    Incorrect

    • A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty exercising. After undergoing various tests, including echocardiography and right heart catheterization, it is determined that he has pulmonary arterial hypertension (PAH) with a mean pulmonary artery pressure of 35 mmhg and a pulmonary capillary wedge pressure of 8mmhg. One of the medications prescribed for him is ambrisentan. What is the mechanism of action of this drug?

      Your Answer: Nitrovasodilator

      Correct Answer: Endothelin-1 receptor antagonist

      Explanation:

      Ambrisentan is an antagonist of endothelin-1 receptors, which are involved in vasoconstriction. In pulmonary arterial hypertension (PAH), the expression of endothelin-1 is increased, leading to constriction of blood vessels. Ambrisentan selectively targets ETA receptors found in vascular smooth muscle, reducing morbidity and mortality in PAH patients. Common side effects include peripheral edema, sinusitis, flushing, and nasal congestion. Prostacyclins like PGI2 can also be used to manage PPH by dilating blood vessels and inhibiting platelet aggregation. PGE2, an inflammatory mediator, is not used in PAH treatment. PDE inhibitors like sildenafil increase cGMP levels in pulmonary vessels, relaxing vascular smooth muscle and reducing pulmonary artery pressure.

      Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.

      The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.

      Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.

    • This question is part of the following fields:

      • Cardiovascular System
      20
      Seconds
  • Question 4 - A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram,...

    Incorrect

    • A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?

      Your Answer: L2

      Correct Answer: L1

      Explanation:

      The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      14.3
      Seconds
  • Question 5 - A baby is born prematurely at 28 weeks, increasing the likelihood of delayed...

    Incorrect

    • A baby is born prematurely at 28 weeks, increasing the likelihood of delayed closure of the ductus venosus. What are the structures that the ductus venosus connects in the fetus?

      Your Answer: Umbilical vein and umbilical artery

      Correct Answer: IVC and umbilical vein

      Explanation:

      During fetal development, the ductus venosus redirects blood flow from the left umbilical vein directly to the inferior vena cava, enabling oxygenated blood from the placenta to bypass the fetal liver. Typically, the ductus closes and becomes the ligamentum venosum between day 3 and 7. However, premature infants are more susceptible to delayed closure.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      7
      Seconds
  • Question 6 - Where are the arterial baroreceptors situated? ...

    Incorrect

    • Where are the arterial baroreceptors situated?

      Your Answer: None of the above

      Correct Answer: Carotid sinus and aortic arch

      Explanation:

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      3.7
      Seconds
  • Question 7 - A toddler is brought to the hospital at 18 months of age with...

    Incorrect

    • A toddler is brought to the hospital at 18 months of age with symptoms of increased work of breathing and difficulty while feeding. On examination, a continuous 'machinery' murmur is heard and is loudest at the left sternal edge. The cardiologist prescribes a dose of indomethacin. What is the mechanism of action of indomethacin?

      The baby was born prematurely at 36 weeks via an emergency cesarean section. Despite the early delivery, the baby appeared healthy and was given a dose of Vitamin K soon after birth. The mother lived in a cottage up in the mountains and was discharged the next day with her happy, healthy baby. However, six weeks later, the baby was brought back to the hospital with concerning symptoms.

      Your Answer: Adenosine receptor antagonist

      Correct Answer: Prostaglandin synthase inhibitor

      Explanation:

      Indomethacin is a medication that hinders the production of prostaglandins in infants with patent ductus arteriosus by inhibiting the activity of COX enzymes. On the other hand, bosentan, an endothelin receptor antagonist, is utilized to treat pulmonary hypertension by blocking the vasoconstricting effect of endothelin, leading to vasodilation. Although endothelin causes vasoconstriction by acting on endothelin receptors, it is not employed in managing PDA. Adenosine receptor antagonists like theophylline and caffeine are also not utilized in PDA management.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      24.7
      Seconds
  • Question 8 - Which nerve is most vulnerable to damage when there is a cut on...

    Correct

    • Which nerve is most vulnerable to damage when there is a cut on the upper lateral margin of the popliteal fossa in older adults?

      Your Answer: Common peroneal nerve

      Explanation:

      The lower infero-lateral aspect of the fossa is where the sural nerve exits, and it is at a higher risk during short saphenous vein surgery. On the other hand, the tibial nerve is located more medially and is less susceptible to injury in this area.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      6.1
      Seconds
  • Question 9 - A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty...

    Correct

    • A 65-year-old man presents to his GP with worsening breathlessness. He reports difficulty climbing stairs and sleeping, and finds it easier to sleep in his living room chair. He used to manage stairs fine a year ago, but now has to stop twice on the way up.

      When asked about other symptoms, he reports feeling slightly wheezy and occasionally coughing up white sputum. He denies any weight loss. His medical history includes angina, non-diabetic hyperglycaemia, and hypertension. He has smoked 15 cigarettes per day since he was 25 and drinks around 5 pints of lager every Friday and Saturday night.

      On examination, his oxygen saturations are 96%, respiratory rate 16/min at rest, heart rate 78/min, and blood pressure 141/88 mmHg. Bibasal crackles are heard on auscultation of his lungs.

      What is the most likely diagnosis?

      Your Answer: Heart failure

      Explanation:

      Orthopnoea is a distinguishing symptom that can help differentiate between heart failure and COPD in patients. While the symptoms may be non-specific, the presence of orthopnoea, or breathlessness when lying down, is a key indicator of heart failure rather than COPD.

      Although the patient has a significant history of smoking, there are no other signs of lung cancer such as weight loss, persistent cough, or coughing up blood. However, it is recommended to conduct an urgent chest X-ray to rule out any serious underlying conditions.

      In cases of occupational asthma, symptoms tend to worsen when exposed to triggers in the workplace and improve during time off. However, in this patient’s case, the symptoms have been gradually worsening over time.

      Features of Chronic Heart Failure

      Chronic heart failure is a condition that affects the heart’s ability to pump blood effectively. It is characterized by several features that can help in its diagnosis. Dyspnoea, or shortness of breath, is a common symptom of chronic heart failure. Patients may also experience coughing, which can be worse at night and accompanied by pink or frothy sputum. Orthopnoea, or difficulty breathing while lying down, and paroxysmal nocturnal dyspnoea, or sudden shortness of breath at night, are also common symptoms.

      Another feature of chronic heart failure is the presence of a wheeze, known as a cardiac wheeze. Patients may also experience weight loss, known as cardiac cachexia, which occurs in up to 15% of patients. However, this may be hidden by weight gained due to oedema. On examination, bibasal crackles may be heard, and signs of right-sided heart failure, such as a raised JVP, ankle oedema, and hepatomegaly, may be present.

      In summary, chronic heart failure is a condition that can be identified by several features, including dyspnoea, coughing, orthopnoea, paroxysmal nocturnal dyspnoea, wheezing, weight loss, bibasal crackles, and signs of right-sided heart failure. Early recognition and management of these symptoms can help improve outcomes for patients with chronic heart failure.

    • This question is part of the following fields:

      • Cardiovascular System
      22.5
      Seconds
  • Question 10 - A 32-year-old man is shot in the postero-inferior aspect of his thigh. What...

    Incorrect

    • A 32-year-old man is shot in the postero-inferior aspect of his thigh. What structure is located at the most lateral aspect of the popliteal fossa?

      Your Answer: Tibial nerve

      Correct Answer: Common peroneal nerve

      Explanation:

      The structures found in the popliteal fossa, listed from medial to lateral, include the popliteal artery, popliteal vein, tibial nerve, and common peroneal nerve. The sural nerve, which is a branch of the tibial nerve, typically originates at the lower part of the popliteal fossa, but its location may vary.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      15.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (2/10) 20%
Passmed