-
Question 1
Incorrect
-
A 6-year-old boy arrives at the Emergency Department accompanied by his mother, reporting a deteriorating headache, vomiting, and muscle weakness that has been developing over the past few months. Upon examination, you observe ataxia and unilateral muscle weakness. The child is otherwise healthy, with no significant medical history, and is apyrexial. Imaging tests reveal a medulla oblongata brainstem tumor.
From which embryonic component does the affected structure originate?Your Answer: Diencephalon
Correct Answer: Myelencephalon
Explanation:The myelencephalon gives rise to the medulla oblongata and the inferior part of the fourth ventricle. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The metencephalon gives rise to the pons, cerebellum, and the superior part of the fourth ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct.
Embryonic Development of the Nervous System
The nervous system develops from the embryonic neural tube, which gives rise to the brain and spinal cord. The neural tube is divided into five regions, each of which gives rise to specific structures in the nervous system. The telencephalon gives rise to the cerebral cortex, lateral ventricles, and basal ganglia. The diencephalon gives rise to the thalamus, hypothalamus, optic nerves, and third ventricle. The mesencephalon gives rise to the midbrain and cerebral aqueduct. The metencephalon gives rise to the pons, cerebellum, and superior part of the fourth ventricle. The myelencephalon gives rise to the medulla and inferior part of the fourth ventricle.
The neural tube is also divided into two plates: the alar plate and the basal plate. The alar plate gives rise to sensory neurons, while the basal plate gives rise to motor neurons. This division of the neural tube into different regions and plates is crucial for the proper development and function of the nervous system. Understanding the embryonic development of the nervous system is important for understanding the origins of neurological disorders and for developing new treatments for these disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A 49-year-old male presents to the ENT clinic with a 9-month history of constant right-sided deafness and a sensation of feeling off-balance. He has no significant medical history. Upon examination, an audiogram reveals reduced hearing to both bone and air conduction on the right side. A cranial nerve exam shows an absent corneal reflex on the right side and poor balance. Otoscopy of both ears is unremarkable. What is the probable underlying pathology responsible for this patient's symptoms and signs?
Your Answer: Meniere's disease
Correct Answer: Vestibular schwannoma (acoustic neuroma)
Explanation:Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.
If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Incorrect
-
A 27-year-old man is brought to the emergency department by paramedics following a gunshot wound sustained during a violent altercation. Despite being conscious, he is experiencing severe pain and is unable to respond to any inquiries.
Upon initial evaluation, his airway is unobstructed, he is breathing normally, and there are no indications of cardiovascular distress.
During an examination of his lower extremities, a bullet wound is discovered 2 cm below his popliteal fossa. The emergency physician suspects that the tibial nerve, which runs just beneath the popliteal fossa, has been damaged.
Which of the following clinical findings is most likely to be observed in this patient?Your Answer: Loss of plantar flexion, weakened inversion and normal toe flexion
Correct Answer: Loss of plantar flexion, loss of flexion of toes and weakened inversion
Explanation:When the tibial nerve is damaged, it can cause a variety of symptoms such as the loss of plantar flexion, weakened inversion, and the inability to flex the toes. This type of injury is uncommon and can occur due to direct trauma, entrapment in a narrow space, or prolonged compression. It’s important to note that while the tibialis anterior muscle can still invert the foot, the overall strength of foot inversion is reduced. Other options that do not accurately describe the clinical signs of tibial nerve damage are incorrect.
The Tibial Nerve: Muscles Innervated and Termination
The tibial nerve is a branch of the sciatic nerve that begins at the upper border of the popliteal fossa. It has root values of L4, L5, S1, S2, and S3. This nerve innervates several muscles, including the popliteus, gastrocnemius, soleus, plantaris, tibialis posterior, flexor hallucis longus, and flexor digitorum brevis. These muscles are responsible for various movements in the lower leg and foot, such as plantar flexion, inversion, and flexion of the toes.
The tibial nerve terminates by dividing into the medial and lateral plantar nerves. These nerves continue to innervate muscles in the foot, such as the abductor hallucis, flexor digitorum brevis, and quadratus plantae. The tibial nerve plays a crucial role in the movement and function of the lower leg and foot, and any damage or injury to this nerve can result in significant impairments in mobility and sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
An aging patient with Parkinson's disease is admitted to a neurology ward after experiencing a fall. While conducting a cranial nerves examination, the physician observes that the patient is unable to gaze upward when their head is fixed in place. The physician begins to consider other potential diagnoses. What would be the most appropriate diagnosis?
Your Answer: Multiple system atrophy
Correct Answer: Progressive supranuclear palsy
Explanation:These are all syndromes that share the main symptoms of Parkinson’s disease, but also have additional specific symptoms:
– Progressive supranuclear palsy affects the muscles used for looking upwards.
– Vascular dementia is a type of dementia that usually occurs after several small strokes.
– Dementia with Lewy bodies is characterized by the buildup of Lewy bodies, which are clumps of a protein called alpha-synuclein, and often includes visual hallucinations.
– Multiple system atrophy often involves problems with the autonomic nervous system, such as low blood pressure when standing and difficulty emptying the bladder.Progressive supranuclear palsy, also known as Steele-Richardson-Olszewski syndrome, is a type of ‘Parkinson Plus’ syndrome. It is characterized by postural instability and falls, as well as a stiff, broad-based gait. Patients with this condition also experience impairment of vertical gaze, with down gaze being worse than up gaze. This can lead to difficulty reading or descending stairs. Parkinsonism is also present, with bradykinesia being a prominent feature. Cognitive impairment is also common, primarily due to frontal lobe dysfunction. Unfortunately, this condition has a poor response to L-dopa.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
A 39-year-old man comes to the emergency department with his wife who reports that he is exhibiting unusual behavior. According to her, he has been experiencing a progressively severe headache for the past three days. He vomited once this morning, and there is no history of head injury. Bilateral papilloedema is present on ophthalmoscopy. Although he scores a GCS of 15, his speech is sometimes slurred and confused. A CT scan of the head reveals a mass on the right side, near the midline in the anterior parietal lobe. The lateral and third ventricles are significantly dilated, indicating a blockage in the flow of cerebrospinal fluid (CSF). What structure does CSF from the third ventricle typically flow into the fourth ventricle through?
Your Answer: Median aperture (foramen of Magendie)
Correct Answer: Cerebral aqueduct
Explanation:The cerebral aqueduct is the correct answer.
The interventricular foramina allow the two lateral ventricles to drain into the third ventricle, which is located in the midline between the thalami of the two hemispheres. The third ventricle communicates with the fourth ventricle via the cerebral aqueduct (of Sylvius).
CSF flows from the third ventricle into the fourth ventricle through the cerebral aqueduct (of Sylvius). From the fourth ventricle, CSF can leave through one of four openings: the median aperture (foramen of Magendie), either of the two lateral apertures (foramina of Luschka), or the central canal at the obex.
The patient in the question is showing symptoms of raised intracranial pressure, which can be caused by various factors, including mass lesions and neoplasms. In this case, a mass is blocking the normal flow of CSF through the ventricular system, leading to an increase in intracranial pressure.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Correct
-
A 82-year-old man comes to the emergency department complaining of abdominal and bone pain. He appears confused, and his wife reports that he has been feeling down lately. After conducting blood tests, you discover that he has elevated levels of parathyroid hormone, leading you to suspect primary hyperparathyroidism.
What bone profile results would you anticipate?Your Answer: Increased levels of calcium and decreased phosphate
Explanation:PTH elevates calcium levels while reducing phosphate levels.
A single parathyroid adenoma is often responsible for primary hyperparathyroidism, which results in the release of PTH and elevated/normal calcium levels. Normally, increased calcium levels would lead to decreased PTH levels.
Vitamin D is another significant factor in calcium homeostasis, as it increases both plasma calcium and phosphate levels.
Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
A 50-year old male visits the endocrinology clinic for a pituitary tumour diagnosis. He needs to undergo a transsphenoidal surgery to remove the pituitary gland. How is the pituitary gland connected to the brain to ensure the transportation of pituitary hormones?
Your Answer: Hypothalamus
Correct Answer: Pituitary portal system
Explanation:The endocrine system is primarily regulated by the pituitary gland, which is itself controlled by the hypothalamus. The neurohypophysis is influenced by the hypothalamus because its cell bodies are located within the hypothalamus, while the adenohypophysis is regulated by neuroendocrine cells in the hypothalamus that release trophic hormones into the pituitary portal vessels. The pituitary gland subsequently secretes various hormones that impact different parts of the body.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia, and lacrimation. His pupils constrict in response to light.
What is the neurotransmitter responsible for this pupillary response?Your Answer:
Correct Answer: Acetylcholine
Explanation:The primary neurotransmitter used by the parasympathetic nervous system is acetylcholine (ACh). This pathway is responsible for activities such as lacrimation and pupil constriction, which are also mediated by ACh.
On the other hand, the sympathetic pathway uses epinephrine as its neurotransmitter, which is involved in pupil dilation. Norepinephrine is also a neurotransmitter of the sympathetic pathway.
In the brain, gamma-aminobutyric acid acts as an inhibitory neurotransmitter.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A 75-year-old woman with a history of atrial fibrillation presents with a cold and pulseless white arm, indicating a possible brachial embolus. The patient undergoes a brachial embolectomy. What structure is most vulnerable to injury during this procedure?
Your Answer:
Correct Answer: Median nerve
Explanation:The antecubital fossa is where the brachial artery and median nerve are located in close proximity. Surgeons typically access the brachial artery in this area for embolectomy procedures. However, care must be taken to avoid damaging the median nerve when applying vascular clamps to the artery.
Anatomy of the Brachial Artery
The brachial artery is a continuation of the axillary artery and runs from the lower border of teres major to the cubital fossa where it divides into the radial and ulnar arteries. It is located in the upper arm and has various relations with surrounding structures. Posteriorly, it is related to the long head of triceps with the radial nerve and profunda vessels in between. Anteriorly, it is overlapped by the medial border of biceps. The median nerve crosses the artery in the middle of the arm. In the cubital fossa, the brachial artery is separated from the median cubital vein by the bicipital aponeurosis. The basilic vein is in contact with the most proximal aspect of the cubital fossa and lies medially. Understanding the anatomy of the brachial artery is important for medical professionals when performing procedures such as blood pressure measurement or arterial line placement.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 58-year-old man visits his doctor complaining of constipation and a decrease in his sex drive. The man cannot recall when the symptoms began, but he does recall falling off a ladder recently. Upon examination, the man appears to be in good health.
What is the most probable site of injury or damage in this man?Your Answer:
Correct Answer: Sacral spine (S2,3,4)
Explanation:Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
Following the discovery of a pituitary tumour in a 32-year-old woman who presented with amenorrhoea, a brain MRI is conducted to fully evaluate the tumour before surgical removal. The results reveal that the tumour is starting to compress the lateral geniculate nucleus of the thalamus.
What kind of symptom would arise from this compression?Your Answer:
Correct Answer: Visual impairment
Explanation:Visual impairment can occur as a result of damage to the lateral geniculate nucleus (LGN), which is a part of the thalamus involved in the visual pathway. The LGN receives information from the retina and sends it to the cortex via optic radiations. Although rare, the LGN can be damaged by compression from pituitary tumors or lesions affecting the choroidal arteries. However, damage to the LGN or other parts of the thalamus will not cause auditory impairment, aphasia, or reduced facial sensation. These conditions are typically caused by damage to other regions of the brain.
The Thalamus: Relay Station for Motor and Sensory Signals
The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Incorrect
-
A 79-year-old man with no prior medical history presents with symptoms of an ischaemic stroke. During the neurological examination in the emergency department, he is alert and able to answer questions appropriately. His limbs have normal tone, power, reflexes, and sensation, but he displays some lack of coordination. When asked to perform a finger-nose test, he accuses the examiner of cheating, claiming that he cannot see their finger or read their name tag. Which specific area of his brain is likely to be damaged, causing his visual deficits?
Your Answer:
Correct Answer: Lateral geniculate nucleus
Explanation:Damage to the lateral geniculate nucleus in the thalamus can cause visual impairment, while damage to other brain regions such as the brainstem, medial geniculate nucleus, postcentral gyrus, and prefrontal cortex produce different neurological deficits. Understanding the functions of each brain region can aid in localising strokes.
The Thalamus: Relay Station for Motor and Sensory Signals
The thalamus is a structure located between the midbrain and cerebral cortex that serves as a relay station for motor and sensory signals. Its main function is to transmit these signals to the cerebral cortex, which is responsible for processing and interpreting them. The thalamus is composed of different nuclei, each with a specific function. The lateral geniculate nucleus relays visual signals, while the medial geniculate nucleus transmits auditory signals. The medial portion of the ventral posterior nucleus (VML) is responsible for facial sensation, while the ventral anterior/lateral nuclei relay motor signals. Finally, the lateral portion of the ventral posterior nucleus is responsible for body sensation, including touch, pain, proprioception, pressure, and vibration. Overall, the thalamus plays a crucial role in the transmission of sensory and motor information to the brain, allowing us to perceive and interact with the world around us.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
As a medical student in the memory clinic, I recently encountered an 84-year-old female patient who was taking memantine. Can you explain the mechanism of action of this medication?
Your Answer:
Correct Answer: NMDA antagonist
Explanation:Memantine, an NMDA receptor antagonist, is a drug commonly used in the treatment of various neurological disorders, such as Alzheimer’s disease. Its primary mode of action is thought to involve the inhibition of current flow through NMDA receptor channels, which are a type of glutamate receptor subfamily that plays a significant role in brain function.
Management of Alzheimer’s Disease
Alzheimer’s disease is a type of dementia that progressively affects the brain and is the most common form of dementia in the UK. There are both non-pharmacological and pharmacological management options available for patients with Alzheimer’s disease.
Non-pharmacological management involves offering activities that promote wellbeing and are tailored to the patient’s preferences. Group cognitive stimulation therapy, group reminiscence therapy, and cognitive rehabilitation are some of the options that can be considered.
Pharmacological management options include acetylcholinesterase inhibitors such as donepezil, galantamine, and rivastigmine for managing mild to moderate Alzheimer’s disease. Memantine, an NMDA receptor antagonist, is a second-line treatment option that can be used for patients with moderate Alzheimer’s who are intolerant of or have a contraindication to acetylcholinesterase inhibitors. It can also be used as an add-on drug to acetylcholinesterase inhibitors for patients with moderate or severe Alzheimer’s or as monotherapy in severe Alzheimer’s.
When managing non-cognitive symptoms, NICE does not recommend the use of antidepressants for mild to moderate depression in patients with dementia. Antipsychotics should only be used for patients at risk of harming themselves or others or when the agitation, hallucinations, or delusions are causing them severe distress.
It is important to note that donepezil is relatively contraindicated in patients with bradycardia, and adverse effects may include insomnia. Proper management of Alzheimer’s disease can improve the quality of life for patients and their caregivers.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 67-year-old man visited his doctor with complaints of weakness in both legs that have been present for the past two months. Initially, he attributed it to his age, but he feels that it is getting worse. The man has difficulty standing up from a seated position, but his arms and shoulders feel fine. He also noticed that the weakness improves slightly when he keeps walking. The patient denies any eye-related symptoms or drooping of the eyelids. According to the patient's wife, he has lost a lot of weight recently despite not dieting or engaging in physical activity. The patient confirms this but says that he feels fine except for a dry cough that has been persistent. The patient has a medical history of diabetes, hypertension, and a smoking history of 40 pack-years. During the examination, the doctor observed slightly decreased air entry on the right side. What is the most likely mechanism underlying this patient's symptoms?
Your Answer:
Correct Answer: Antibodies directed towards presynaptic voltage-gated calcium channels
Explanation:Based on the patient’s symptoms, the two most likely diagnoses are polymyositis and Lambert-Eaton myasthenic syndrome (LEMS), both of which involve weakness in the proximal muscles. However, the patient’s history of smoking, unintentional weight loss, and recent cough suggest a possible diagnosis of lung cancer, particularly small-cell lung cancer which can cause a paraneoplastic syndrome resulting in muscle weakness due to antibodies against presynaptic voltage-gated calcium channels. Unlike myasthenia gravis, muscle weakness in LEMS improves with repetitive use. Dermatomyositis is characterized by CD4 positive T-cells-mediated inflammation of the perimysium and skin symptoms such as a SLE-like malar rash and periorbital rash. Botulism, caused by ingestion of the toxin from Clostridium botulinum, results in dyspnea, dysarthria, dysphagia, and diplopia. Myasthenia gravis, on the other hand, is a neuromuscular junction disorder that causes muscle weakness with repetitive use and is associated with thymoma.
Paraneoplastic Neurological Syndromes and their Associated Antibodies
Paraneoplastic neurological syndromes are a group of disorders that occur in cancer patients and are caused by an immune response to the tumor. One such syndrome is Lambert-Eaton myasthenic syndrome, which is commonly seen in small cell lung cancer patients. This syndrome is characterized by proximal muscle weakness, hyporeflexia, and autonomic features such as dry mouth and impotence. The antibody responsible for this syndrome is directed against voltage-gated calcium channels and has similar features to myasthenia gravis.
Other paraneoplastic neurological syndromes may be associated with detectable antibodies as well. For example, anti-Hu antibodies are associated with small cell lung cancer and can cause painful sensory neuropathy, cerebellar syndromes, and encephalitis. Anti-Yo antibodies are associated with ovarian and breast cancer and can cause a cerebellar syndrome. Anti-Ri antibodies are associated with small cell lung cancer and can cause retinal degeneration.
In summary, paraneoplastic neurological syndromes are a group of disorders that occur in cancer patients and are caused by an immune response to the tumor. These syndromes can be associated with detectable antibodies, which can help with diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 57-year-old woman arrives at the emergency department after experiencing a generalized tonic clonic seizure. Routine laboratory tests come back normal, but a CT scan of the brain with contrast shows a densely enhancing, well-defined extra-axial mass attached to the dural layer. If a biopsy of the mass were to be performed, what is the most probable histological finding?
Your Answer:
Correct Answer: Spindle cells in concentric whorls and calcified psammoma bodies
Explanation:The characteristic histological findings of spindle cells in concentric whorls and calcified psammoma bodies are indicative of meningiomas, which are the most likely brain tumor in the given scenario. Meningiomas are typically asymptomatic due to their location outside the brain tissue, and are more commonly found in middle-aged females. They are described as masses with distinct margins, homogenous contrast uptake, and dural attachment. Psammoma bodies can also be found in other tumors such as papillary thyroid cancer, serous cystadenomas of the ovary, and mesotheliomas. The other answer choices are incorrect as they are associated with different types of brain tumors such as vestibular schwannomas, oligodendrogliomas, ependymomas, and glioblastoma multiform.
Brain tumours can be classified into different types based on their location, histology, and clinical features. Metastatic brain cancer is the most common form of brain tumours, which often cannot be treated with surgical intervention. Glioblastoma multiforme is the most common primary tumour in adults and is associated with a poor prognosis. Meningioma is the second most common primary brain tumour in adults, which is typically benign and arises from the arachnoid cap cells of the meninges. Vestibular schwannoma is a benign tumour arising from the eighth cranial nerve, while pilocytic astrocytoma is the most common primary brain tumour in children. Medulloblastoma is an aggressive paediatric brain tumour that arises within the infratentorial compartment, while ependymoma is commonly seen in the 4th ventricle and may cause hydrocephalus. Oligodendroma is a benign, slow-growing tumour common in the frontal lobes, while haemangioblastoma is a vascular tumour of the cerebellum. Pituitary adenoma is a benign tumour of the pituitary gland that can be either secretory or non-secretory, while craniopharyngioma is a solid/cystic tumour of the sellar region that is derived from the remnants of Rathke’s pouch.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Incorrect
-
A 82-year-old man presents to falls clinic with a history of four falls in the past four months, despite no previous falls. He also complains of a worsening headache at night over the last three months. During the cranial nerve exam, an inferior homonymous quadrantanopia is observed, but eye movements are intact. The rest of the neurological exam is unremarkable. What area of the brain could be responsible for these symptoms?
Your Answer:
Correct Answer: Superior optic radiation
Explanation:Superior optic radiation lesions in the parietal lobe are responsible for inferior homonymous quadrantanopias. The location of the lesion can be determined by analyzing the visual field defect pattern. Lesions anterior to the optic chiasm cause incongruous defects, while lesions at the optic chiasm cause bitemporal/binasal hemianopias. Lesions posterior to the optic chiasm result in homonymous hemianopias. The optic radiations carry nerves from the optic chiasm to the occipital lobe. Lesions located inferiorly cause superior visual field defects, and vice versa. Therefore, the woman’s inferior homonymous quadrantanopias indicate a lesion on the superior aspect of the optic radiation in the parietal lobe. Superior homonymous quadrantanopias result from lesions to the inferior aspect of the optic radiations. Compression of the lateral aspects of the optic chiasm causes nasal/binasal visual field defects, while compression of the superior optic chiasm causes bitemporal hemianopias. Lesions to the optic nerve before reaching the optic chiasm cause an incongruous homonymous hemianopia affecting the ipsilateral eye.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A pair of adolescents are fooling around with an airgun when one mistakenly shoots his buddy in the stomach. The injured friend is rushed to the ER where he is examined. The bullet has entered just to the right of the rectus sheath at the level of the 2nd lumbar vertebrae. Which of the following structures is the most probable to have been harmed by the bullet?
Your Answer:
Correct Answer: Fundus of the gallbladder
Explanation:The most superficially located structure is the fundus of the gallbladder, which is found at this level.
Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
Where exactly can the vomiting center be found?
Your Answer:
Correct Answer: Medulla oblongata
Explanation:Here are the non-GI causes of vomiting, listed alphabetically:
– Acute renal failure
– Brain conditions that increase intracranial pressure
– Cardiac events, particularly inferior myocardial infarction
– Diabetic ketoacidosis
– Ear infections that affect the inner ear (labyrinthitis)
– Ingestion of foreign substances, such as Tylenol or theophylline
– Glaucoma
– Hyperemesis gravidarum, a severe form of morning sickness in pregnancy
– Infections such as pyelonephritis (kidney infection) or meningitis.Vomiting is the involuntary act of expelling the contents of the stomach and sometimes the intestines. This is caused by a reverse peristalsis and abdominal contraction. The vomiting center is located in the medulla oblongata and is activated by receptors in various parts of the body. These include the labyrinthine receptors in the ear, which can cause motion sickness, the over distention receptors in the duodenum and stomach, the trigger zone in the central nervous system, which can be affected by drugs such as opiates, and the touch receptors in the throat. Overall, vomiting is a reflex action that is triggered by various stimuli and is controlled by the vomiting center in the brainstem.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
Which one of the following is not a direct branch of the facial nerve?
Your Answer:
Correct Answer: Auriculotemporal
Explanation:The mandibular nerve gives rise to several branches, including the auriculotemporal nerve, lingual nerve, inferior alveolar nerve, nerve to the mylohyoid, and mental nerve.
The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.
The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 26-year-old female presents to her physician complaining of tingling in her left arm and double vision for the past three days. She reports feeling fatigued for the past six months. She has no significant medical history and is not taking any medications. She smokes five cigarettes per day, drinks one bottle of wine per week, and works as a journalist.
During the neurological examination, the physician observed reduced sensation in the patient's left upper limb. Additionally, the patient's right eye failed to adduct and her left eye demonstrated nystagmus on left lateral gaze. Based on these findings, where is the anatomical location of the lesion causing the eye signs on examination likely to be?Your Answer:
Correct Answer: Medial longitudinal fasciculus
Explanation:The correct answer is the medial longitudinal fasciculus, which is a myelinated structure located in the brainstem responsible for conjugate eye movements. In this case, the patient’s symptoms and examination findings suggest a diagnosis of internuclear ophthalmoplegia, which is a disorder of conjugate lateral gaze caused by a lesion in the medial longitudinal fasciculus. This is often associated with multiple sclerosis. The affected eye fails to adduct when attempting to look contralaterally, and the contralateral eye demonstrates nystagmus. Mamillary bodies, neuromuscular junction, and optic nerve are not the likely causes of the patient’s symptoms.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 36-year-old patient, Sarah, arrives at the emergency department with an abrupt onset of left-sided facial weakness. The weakness impacts the entire left side of her face, including her forehead, and her corneal reflex is absent upon examination. The physician prescribes prednisolone and informs Sarah that her facial weakness should improve within a few weeks.
What is the cranial foramen through which the nerve responsible for Sarah's symptoms passes?Your Answer:
Correct Answer: Internal acoustic meatus
Explanation:The correct answer is the internal acoustic meatus, through which the facial nerve (CN VII) and vestibulocochlear nerve (CN VIII) pass. Emily is likely experiencing Bell’s Palsy, which is treated with prednisolone. The foramen ovale is incorrect, as it is where the mandibular branch of the trigeminal nerve (CN V₃) passes. The foramen spinosum is also incorrect, as it is where the middle meningeal artery, middle meningeal vein, and meningeal branch of the mandibular nerve (CN V₃) pass. The jugular foramen is incorrect, as it is where the glossopharyngeal nerve (CN IX), vagus nerve (CN X), and spinal accessory nerve (CN XI) pass. The superior orbital fissure (SOF) is also incorrect, as it is where the lacrimal nerve, frontal and nasociliary branches of the ophthalmic nerve (CN V₁), trochlear nerve (CN IV), oculomotor nerve (CN III), abducens nerve (CN VI), superior ophthalmic vein, and a branch of the inferior ophthalmic vein pass.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Incorrect
-
A 30-year-old woman visits the doctor's office complaining of nausea and vomiting. Upon taking a pregnancy test, it is discovered that she is indeed pregnant. Can you identify the location of the chemoreceptor trigger zone?
Your Answer:
Correct Answer: Area postrema (medulla)
Explanation:The vomiting process is initiated by the chemoreceptor trigger zone, which receives signals from various sources such as the gastrointestinal tract, hormones, and drugs. This zone is located in the area postrema, which is situated on the floor of the 4th ventricle in the medulla. It is noteworthy that the area postrema is located outside the blood-brain barrier. The nucleus of tractus solitarius, which is also located in the medulla, contains autonomic centres that play a role in the vomiting reflex. This nucleus receives signals from the chemoreceptor trigger zone. The vomiting centres in the brain receive inputs from different areas, including the gastrointestinal tract and the vestibular system of the inner ear.
Vomiting is the involuntary act of expelling the contents of the stomach and sometimes the intestines. This is caused by a reverse peristalsis and abdominal contraction. The vomiting center is located in the medulla oblongata and is activated by receptors in various parts of the body. These include the labyrinthine receptors in the ear, which can cause motion sickness, the over distention receptors in the duodenum and stomach, the trigger zone in the central nervous system, which can be affected by drugs such as opiates, and the touch receptors in the throat. Overall, vomiting is a reflex action that is triggered by various stimuli and is controlled by the vomiting center in the brainstem.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Incorrect
-
A 16-year-old male comes to the emergency department with a shoulder injury following a football tackle.
During the examination, it is discovered that he has a dislocated shoulder, weakness in elbow flexion, weakness in supination, and a loss of sensation on the lateral side of his forearm.
Which nerve is most likely to have been damaged?Your Answer:
Correct Answer: Musculocutaneous nerve
Explanation:When the musculocutaneous nerve is injured, it can cause weakness in elbow flexion and supination, as well as sensory loss on the outer side of the forearm. Other nerves in the arm have different functions, such as the median nerve which controls many of the flexor muscles in the forearm and provides sensation to the palm and fingers, the radial nerve which controls the triceps and extensor muscles in the back of the forearm and provides sensation to the back of the arm and hand, and the axillary nerve which controls the deltoid and teres minor muscles and provides sensation to the lower part of the deltoid muscle. The musculocutaneous nerve also has a branch that provides sensation to the outer part of the forearm.
Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb
The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.
The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.
The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.
Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A young man presents with loss of fine-touch and vibration sensation on the right side of his body. He also shows a loss of proprioception on the same side. What anatomical structure is likely to have been damaged?
Your Answer:
Correct Answer: Right dorsal column
Explanation:Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Incorrect
-
A 25-year-old climber sustains a humerus fracture and requires surgery. The surgeons opt for a posterior approach to the middle third of the bone. Which nerve is most vulnerable in this procedure?
Your Answer:
Correct Answer: Radial
Explanation:The humerus can cause damage to the radial nerve when approached from the back. To avoid the need for intricate bone exposure, an IM nail may be a better option.
The Radial Nerve: Anatomy, Innervation, and Patterns of Damage
The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.
The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.
Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
A 55-year-old man comes to his physician complaining of severe morning headaches. The doctor conducts a neurological evaluation to detect any neurological impairments. During the assessment, the patient exhibits normal responses for all tests except for the absence of corneal reflex.
Which cranial nerve is impacted?Your Answer:
Correct Answer: Trigeminal nerve
Explanation:The loss of corneal reflex is associated with the trigeminal nerve, specifically the ophthalmic branch. This reflex tests the sensation of the eyeball when cotton wool is used to touch it, causing the eye to blink in response. The glossopharyngeal nerve is not associated with the eye but is involved in the gag reflex. The optic nerve is responsible for vision and does not provide physical sensation to the eyeball. The oculomotor nerve is primarily a motor nerve and only provides sensory information in response to bright light. The trochlear nerve is purely motor and has no sensory innervations.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
Emma, a 31-year-old female, has been in labour for 20 hours. She has only received Entonox and pethidine for pain relief and now requests an epidural.
After examining Emma, the anaesthetist determines that she is suitable for an epidural.
What is the proper sequence of structures that the needle must pass through to administer epidural analgesia to Emma?Your Answer:
Correct Answer: Skin, subcutaneous fat, supraspinous ligament, interspinous ligament, and ligamentum flavum
Explanation:Lumbar Puncture Procedure
Lumbar puncture is a medical procedure that involves obtaining cerebrospinal fluid. In adults, the procedure is typically performed at the L3/L4 or L4/5 interspace, which is located below the spinal cord’s termination at L1.
During the procedure, the needle passes through several layers. First, it penetrates the supraspinous ligament, which connects the tips of spinous processes. Then, it passes through the interspinous ligaments between adjacent borders of spinous processes. Next, the needle penetrates the ligamentum flavum, which may cause a give. Finally, the needle passes through the dura mater into the subarachnoid space, which is marked by a second give. At this point, clear cerebrospinal fluid should be obtained.
Overall, the lumbar puncture procedure is a complex process that requires careful attention to detail. By following the proper steps and guidelines, medical professionals can obtain cerebrospinal fluid safely and effectively.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 55-year-old male comes to the GP complaining of recent changes in his vision. He became aware of this while reading a book. He denies any ocular discomfort, redness, or vision loss. During the eye examination, you observe that his right eye is elevated and turned outward.
What other symptom is commonly linked to the probable diagnosis?Your Answer:
Correct Answer: Vertical diplopia
Explanation:Fourth nerve palsy is characterized by vertical diplopia, which is often noticed when reading or going downstairs. The trochlear nerve lesion causes the affected eye to appear upward and rotate out when looking straight ahead. On the other hand, third nerve palsy causes ptosis, where the upper eyelid droops, and the affected eye is in a ‘down and out’ position. Exophthalmos, or bulging of the eye, is a symptom of Grave’s disease, a type of thyrotoxicosis. Other symptoms of Grave’s disease include ophthalmoplegia, thyroid acropachy, and pretibial myxoedema. Mydriasis, or pupil dilation, can be caused by third nerve palsy, drugs like cocaine, and a phaeochromocytoma.
Understanding Fourth Nerve Palsy
Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
Sarah, a 23-year-old female, visits the clinic to have her 8-week plaster cast removed from her lower limb. During the examination, it is observed that her right foot is in a plantar flexed position, indicating foot drop.
The physician proceeds to assess the sensation in Sarah's lower limb and feet and discovers a reduction in the area innervated by the deep fibular nerve.
What specific region of Sarah's lower limb or foot is likely to be impacted by this condition?Your Answer:
Correct Answer: Webspace between the first and second toes
Explanation:The webbing between the first and second toes is innervated by the deep fibular nerve. The saphenous nerve, which arises from the femoral nerve, provides cutaneous innervation to the medial aspect of the leg. The sural nerve, which arises from the common fibular and tibial nerves, innervates the lateral foot. The majority of innervation to the dorsum of the foot comes from the superficial fibular nerve.
The common peroneal nerve originates from the dorsal divisions of the sacral plexus, specifically from L4, L5, S1, and S2. This nerve provides sensation to the skin and fascia of the anterolateral surface of the leg and dorsum of the foot, as well as innervating the muscles of the anterior and peroneal compartments of the leg, extensor digitorum brevis, and the knee, ankle, and foot joints. It is located laterally within the sciatic nerve and passes through the lateral and proximal part of the popliteal fossa, under the cover of biceps femoris and its tendon, to reach the posterior aspect of the fibular head. The common peroneal nerve divides into the deep and superficial peroneal nerves at the point where it winds around the lateral surface of the neck of the fibula in the body of peroneus longus, approximately 2 cm distal to the apex of the head of the fibula. It is palpable posterior to the head of the fibula. The nerve has several branches, including the nerve to the short head of biceps, articular branch (knee), lateral cutaneous nerve of the calf, and superficial and deep peroneal nerves at the neck of the fibula.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 38-year-old man visits his doctor with worries of having spinal muscular atrophy, as his father has been diagnosed with the condition. He asks for a physical examination.
What physical exam finding is indicative of the characteristic pattern observed in this disorder?Your Answer:
Correct Answer: Reduced reflexes
Explanation:Lower motor neuron lesions, such as spinal muscular atrophy, result in reduced reflexes and tone. Babinski’s sign is negative in these cases. Increased reflexes and tone are indicative of an upper motor neuron cause of symptoms, which may be seen in conditions such as stroke or Parkinson’s disease. Therefore, normal reflexes and tone are also incorrect findings in lower motor neuron lesions.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)