-
Question 1
Incorrect
-
A 6-year-old child has been in a car accident and has a fracture of the floor of the orbit. The surgeon you consulted is worried that one of the extra-ocular muscles may be trapped in the fracture site. Which muscle is most vulnerable?
Your Answer: Levator palpabrae inferioris
Correct Answer: Inferior rectus
Explanation:The correct muscle that is most at risk in a fracture of the floor of the orbit, also known as an orbital blowout fracture, is the inferior rectus muscle. This muscle is located above the thin plate of the maxillary bone that makes up the floor of the orbit, and is therefore more susceptible to being trapped in these types of fractures.
When the inferior rectus muscle becomes trapped in a blowout fracture, it can result in restricted eye movements and affect extra-orbital soft tissue. This type of fracture is known as a trapdoor fracture and is often associated with the oculocardiac reflex or Aschner phenomenon, which can cause symptoms such as bradycardia, nausea and vomiting, vertigo, and syncope.
It is important to note that the inferior oblique muscle is also commonly affected in these types of fractures, but it was not an option in this question. Additionally, levator palpebrae inferioris is not an actual muscle and is therefore a dummy answer. The muscle that raises the upper eyelid is actually called the levator palpebrae superioris.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
A 55-year-old male with a history of cirrhosis presents to the neurology clinic with his spouse. The spouse reports observing rapid, involuntary jerky movements in the patient's body, which you suspect to be chorea. What is the most probable cause of this?
Your Answer: Alcohol
Correct Answer: Wilson's disease
Explanation:Wilson’s disease can cause chorea, which is characterised by involuntary, rapid, jerky movements that move from one area of the body to the next. Parkinson’s disease, hypothyroidism, and cerebellar syndrome have different symptoms and are not associated with chorea.
Chorea: Involuntary Jerky Movements
Chorea is a medical condition characterized by involuntary, rapid, and jerky movements that can occur in any part of the body. Athetosis, on the other hand, refers to slower and sinuous movements of the limbs. Both conditions are caused by damage to the basal ganglia, particularly the caudate nucleus.
There are various underlying causes of chorea, including genetic disorders such as Huntington’s disease and Wilson’s disease, autoimmune diseases like systemic lupus erythematosus (SLE) and anti-phospholipid syndrome, and rheumatic fever, which can lead to Sydenham’s chorea. Certain medications like oral contraceptive pills, L-dopa, and antipsychotics can also trigger chorea. Other possible causes include neuroacanthocytosis, pregnancy-related chorea gravidarum, thyrotoxicosis, polycythemia rubra vera, and carbon monoxide poisoning.
In summary, chorea is a medical condition that causes involuntary, jerky movements in the body. It can be caused by various factors, including genetic disorders, autoimmune diseases, medications, and other medical conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 3
Correct
-
A 78-year-old male presents to the emergency department with a suspected acute ischaemic stroke. Upon examination, the male displays pendular nystagmus, hypotonia, and an intention tremor primarily in his left hand. During testing, he exhibits hypermetria with his left hand. What is the probable site of the lesion?
Your Answer: Left cerebellum
Explanation:Unilateral cerebellar damage results in ipsilateral symptoms, as seen in the patient in this scenario who is experiencing nystagmus, hypotonia, intention tremor, and hypermetria on the left side following a suspected ischemic stroke. This contrasts with cerebral hemisphere damage, which typically causes contralateral symptoms. A stroke in the left motor cortex, for example, would result in weakness on the right side of the body and face. The right cerebellum is an incorrect answer as it would cause symptoms on the same side of the body, while a stroke in the right motor cortex would cause weakness on the left side. Damage to the occipital lobes, responsible for vision, on the right side would lead to left-sided visual symptoms.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Correct
-
A 67-year-old man presents to his doctor with a one month history of speech difficulty. He reports experiencing pronunciation difficulties which he has never had before. However, his reading ability remains intact.
During the consultation, the doctor observes occasional pronunciation errors when the patient is asked to repeat certain words. Despite this, the patient is able to construct meaningful sentences with minimal grammatical errors. He also demonstrates the ability to comprehend questions and respond appropriately.
The doctor performs a cranial nerve examination which yields normal results.
Which area of the brain may be affected by a lesion to cause this presentation?Your Answer: Arcuate fasciculus
Explanation:Conduction dysphasia is characterized by fluent speech but poor repetition ability, with relatively intact comprehension. This is a typical manifestation of conduction aphasia, which is caused by damage to the arcuate fasciculus connecting Broca’s and Wernicke’s areas. Patients with this condition may be aware of their pronunciation difficulties and may become frustrated when attempting to correct themselves.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
A neurologist is consulted for a patient who has displayed limited visual fields in one eye during an examination. Upon conducting an MRI, the neurologist discovers a tumor in the right temporal lobe, near the border with the occipital region. What type of visual impairment is the patient most likely experiencing?
Your Answer: Left inferior homonymous quadrantanopia
Correct Answer: Left superior homonymous quadrantanopia
Explanation:Temporal lobe lesions result in contralateral homonymous quadrantanopias, with damage to the Meyer’s loop and optic radiations causing this condition. The optic radiations receiving information from the superior quadrants are located more inferiorly while those from the inferior travel more superiorly. As the lesion is located in the lower part of the right temporal lobe near the occipital region, it is likely to affect the left superior quadrant. It is important to note that lesions on the temporal lobe correspond to superior quadrants rather than inferior, and damage to the right side of the brain affects the left visual field. Additionally, temporal lobe lesions cause quadrantanopias and not hemianopias.
Understanding Visual Field Defects
Visual field defects can occur due to various reasons, including lesions in the optic tract, optic radiation, or occipital cortex. A left homonymous hemianopia indicates a visual field defect to the left, which is caused by a lesion in the right optic tract. On the other hand, homonymous quadrantanopias can be categorized into PITS (Parietal-Inferior, Temporal-Superior) and can be caused by lesions in the inferior or superior optic radiations in the temporal or parietal lobes.
When it comes to congruous and incongruous defects, the former refers to complete or symmetrical visual field loss, while the latter indicates incomplete or asymmetric visual field loss. Incongruous defects are caused by optic tract lesions, while congruous defects are caused by optic radiation or occipital cortex lesions. In cases where there is macula sparing, it is indicative of a lesion in the occipital cortex.
Bitemporal hemianopia, on the other hand, is caused by a lesion in the optic chiasm. The type of defect can indicate the location of the compression, with an upper quadrant defect being more common in inferior chiasmal compression, such as a pituitary tumor, and a lower quadrant defect being more common in superior chiasmal compression, such as a craniopharyngioma.
Understanding visual field defects is crucial in diagnosing and treating various neurological conditions. By identifying the type and location of the defect, healthcare professionals can provide appropriate interventions to improve the patient’s quality of life.
-
This question is part of the following fields:
- Neurological System
-
-
Question 6
Incorrect
-
Are the muscles of the thenar eminence supplied by the median nerve and is atrophy of these muscles a characteristic of carpal tunnel syndrome?
Your Answer: Supplies the medial half of flexor digitorum profundus
Correct Answer: Supplies the muscles of the thenar eminence
Explanation:The median nerve supplies the muscles of the thenar eminence, and carpal tunnel syndrome is characterized by the atrophy of these muscles.
The ulnar nerve originates from the medial cord of the brachial plexus, specifically from the C8 and T1 nerve roots. It provides motor innervation to various muscles in the hand, including the medial two lumbricals, adductor pollicis, interossei, hypothenar muscles (abductor digiti minimi, flexor digiti minimi), and flexor carpi ulnaris. Sensory innervation is also provided to the medial 1 1/2 fingers on both the palmar and dorsal aspects. The nerve travels through the posteromedial aspect of the upper arm and enters the palm of the hand via Guyon’s canal, which is located superficial to the flexor retinaculum and lateral to the pisiform bone.
The ulnar nerve has several branches that supply different muscles and areas of the hand. The muscular branch provides innervation to the flexor carpi ulnaris and the medial half of the flexor digitorum profundus. The palmar cutaneous branch arises near the middle of the forearm and supplies the skin on the medial part of the palm, while the dorsal cutaneous branch supplies the dorsal surface of the medial part of the hand. The superficial branch provides cutaneous fibers to the anterior surfaces of the medial one and one-half digits, and the deep branch supplies the hypothenar muscles, all the interosseous muscles, the third and fourth lumbricals, the adductor pollicis, and the medial head of the flexor pollicis brevis.
Damage to the ulnar nerve at the wrist can result in a claw hand deformity, where there is hyperextension of the metacarpophalangeal joints and flexion at the distal and proximal interphalangeal joints of the 4th and 5th digits. There may also be wasting and paralysis of intrinsic hand muscles (except for the lateral two lumbricals), hypothenar muscles, and sensory loss to the medial 1 1/2 fingers on both the palmar and dorsal aspects. Damage to the nerve at the elbow can result in similar symptoms, but with the addition of radial deviation of the wrist. It is important to diagnose and treat ulnar nerve damage promptly to prevent long-term complications.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Incorrect
-
A 72-year-old male presents to the emergency department with severe, central abdominal pain that is radiating to his back. He has vomited twice and on examination you find he has hypotension and tachycardia. He is a current smoker with a past medical history of hypertension and hypercholesterolaemia. You suspect a visceral artery aneurysm and urgently request a CT scan to confirm. The CT scan reveals an aneurysm in the superior mesenteric artery.
From which level of the vertebrae does this artery originate from the aorta?Your Answer: L3
Correct Answer: L1
Explanation:The common iliac veins come together at
Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 8
Incorrect
-
A father brings his 14-year-old son into the Emergency Department, who he witnessed having a 'fit' 30 minutes ago. This occurred as his son was getting up from his chair. The father noticed some shaking of his son's arms, lasting approximately 10 minutes.
His son has been very stressed with school projects over the past week, staying up late and often missing meals. His son's past medical and developmental history is non-significant.
On examination, the son is alert and responsive.
What are the associated factors with this condition?Your Answer: Spike and wave appearance on electroencephalogram
Correct Answer: Short postictal period
Explanation:The recovery from syncopal episodes is rapid and the postictal period is short. In contrast, seizures have a much longer postictal period. The stem suggests that the syncope may be due to exam stress and poor nutrition habits. One way to differentiate between seizures and syncope is by the length of the postictal period, with syncope having a quick recovery. Lip smacking is not associated with syncope, but rather with focal seizures of the temporal lobe. The 10-minute postictal period described in the stem is not consistent with a seizure.
Epilepsy is a neurological condition that causes recurrent seizures. In the UK, around 500,000 people have epilepsy, and two-thirds of them can control their seizures with antiepileptic medication. While epilepsy usually occurs in isolation, certain conditions like cerebral palsy, tuberous sclerosis, and mitochondrial diseases have an association with epilepsy. It’s important to note that seizures can also occur due to other reasons like infection, trauma, or metabolic disturbance.
Seizures can be classified into focal seizures, which start in a specific area of the brain, and generalised seizures, which involve networks on both sides of the brain. Patients who have had generalised seizures may experience biting their tongue or incontinence of urine. Following a seizure, patients typically have a postictal phase where they feel drowsy and tired for around 15 minutes.
Patients who have had their first seizure generally undergo an electroencephalogram (EEG) and neuroimaging (usually a MRI). Most neurologists start antiepileptics following a second epileptic seizure. Antiepileptics are one of the few drugs where it is recommended that we prescribe by brand, rather than generically, due to the risk of slightly different bioavailability resulting in a lowered seizure threshold.
Patients who drive, take other medications, wish to get pregnant, or take contraception need to consider the possible interactions of the antiepileptic medication. Some commonly used antiepileptics include sodium valproate, carbamazepine, lamotrigine, and phenytoin. In case of a seizure that doesn’t terminate after 5-10 minutes, medication like benzodiazepines may be administered to terminate the seizure. If a patient continues to fit despite such measures, they are said to have status epilepticus, which is a medical emergency requiring hospital treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 9
Incorrect
-
A 78-year-old man is referred to the memory clinic for recent memory problems. His family is worried about his ability to take care of himself at home. After evaluation, he is diagnosed with Alzheimer's dementia. What is the pathophysiological process involving tau that occurs in this condition?
Your Answer: Amyloid beta and tau are phosphorylated together to form a tangle
Correct Answer: Hyperphosphorylation of tau prevents it from binding normally to microtubules
Explanation:The binding of tau to microtubules is negatively regulated by phosphorylation. In a healthy adult brain, tau promotes the assembly of microtubules, but in Alzheimer’s disease, hyperphosphorylation of tau inhibits its ability to bind to microtubules normally. This leads to the formation of neurofibrillary tangles instead of promoting microtubule assembly. It is important to note that tau is not a product of Alzheimer’s disease pathology, but rather a physiological protein that becomes involved in the pathophysiological process. Additionally, amyloid beta and tau are not phosphorylated together to form a tangle, and tau does not become bound to microtubules by amyloid beta to form plaques. Lastly, in Alzheimer’s disease, tau is hyperphosphorylated, not inadequately phosphorylated.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 22-year-old woman presented to the hospital with a sudden onset headache. She reports no history of trauma prior to the headache. The pain began at the back of her head while she was watching TV and quickly reached its peak intensity within 2 seconds, rated at 10/10. She has never experienced a headache before.
The patient also reported photophobia and neck stiffness after the headache. Neurological examination did not reveal any focal deficits, and her Glasgow Coma Scale score was 15/15.
What is the most probable underlying diagnosis?Your Answer: Intracerebral haemorrhage
Correct Answer: Subarachnoid haemorrhage
Explanation:If you experience a sudden headache in the occipital region, it could be a sign of subarachnoid haemorrhage. This is especially true if you also develop sensitivity to light and stiffness in the neck. To investigate this possibility, a CT scan of the head may be ordered. If the results are inconclusive, a lumbar puncture with xanthochromia screen may be performed.
In contrast, intracerebral haemorrhage typically causes focal neurological deficits or a decrease in consciousness. It is often associated with risk factors such as hypertension and diabetes.
Extradural haemorrhage, on the other hand, usually occurs after head trauma, particularly to the temporal regions. It is caused by injury to the middle meningeal artery and can cause a lucid patient to lose consciousness gradually over several hours. As intracranial pressure increases, patients may also experience focal neurological deficits and cranial nerve palsies.
There are different types of traumatic brain injury, including focal (contusion/haematoma) or diffuse (diffuse axonal injury). Diffuse axonal injury occurs due to mechanical shearing following deceleration, causing disruption and tearing of axons. Intracranial haematomas can be extradural, subdural or intracerebral, while contusions may occur adjacent to (coup) or contralateral (contre-coup) to the side of impact. Secondary brain injury occurs when cerebral oedema, ischaemia, infection, tonsillar or tentorial herniation exacerbates the original injury.
-
This question is part of the following fields:
- Neurological System
-
-
Question 11
Incorrect
-
A 67-year-old man is rushed to the operating room for suspected ruptured abdominal aortic aneurysm without prior fasting. To perform rapid sequence intubation, the anaesthetists administer thiopental sodium, a barbiturate. What is the mechanism of action of this medication?
Your Answer: Blocks acetylcholine release at the neuromuscular junction
Correct Answer: Increase duration of chloride channel opening
Explanation:Barbiturates increase the duration of chloride channel opening, while sodium valproate and phenytoin work by blocking voltage-gated sodium channels. SNRIs like duloxetine function by inhibiting serotonin-norepinephrine reuptake, and memantine is a glutamate receptor antagonist used for treating moderate to severe Alzheimer’s disease. Botulinum toxin, on the other hand, blocks acetylcholine release at the neuromuscular junction and is used to treat muscle disorders like spasticity and excessive sweating.
Barbiturates are commonly used in the treatment of anxiety and seizures, as well as for inducing anesthesia. They work by enhancing the action of GABAA, a neurotransmitter that helps to calm the brain. Specifically, barbiturates increase the duration of chloride channel opening, which allows more chloride ions to enter the neuron and further inhibit its activity. This is in contrast to benzodiazepines, which increase the frequency of chloride channel opening. A helpful mnemonic to remember this difference is Frequently Bend – During Barbeque or Barbiturates increase duration & Benzodiazepines increase frequency. Overall, barbiturates are an important class of drugs that can help to manage a variety of conditions by modulating the activity of GABAA in the brain.
-
This question is part of the following fields:
- Neurological System
-
-
Question 12
Correct
-
A 60-year-old carpenter comes to your clinic complaining of back pain. He reports that this started a few weeks ago after lifting heavy wood. He experiences a sharp pain that travels from his lower back down the lateral aspect of his left thigh. Despite resting his leg, the pain persists. You suspect that he may have a herniated disc that is compressing his sciatic nerve and want to perform an examination to confirm the presence of sciatic nerve lesion features.
What is the most probable feature that you will discover during the examination?Your Answer: Right sided foot drop
Explanation:Foot drop is a possible consequence of sciatic nerve damage. The patient in question may have a herniated disc caused by heavy lifting, which is compressing their sciatic nerve and leading to weakness in the foot dorsiflexors.
If a person experiences pain when they abduct their hip, it could be due to damage to the superior gluteal nerve.
Damage to the femoral nerve can cause pain when extending the knee, as well as pain when flexing the thigh.
Femoral nerve damage can also result in loss of sensation over the medial aspect of the thigh, as well as the anterior aspect of the thigh and lower leg.
Damage to the lateral cutaneous nerve of the thigh can cause loss of sensation over the posterior surface of the thigh, as well as the lateral surface of the thigh.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 13
Incorrect
-
A 65-year-old patient reports to their physician with a complaint of taste loss. After taking a thorough medical history, the doctor notes no recent infections. However, the patient does mention being able to taste normally when only using the tip of their tongue, such as when licking ice cream.
Which cranial nerve is impacted in this situation?Your Answer: Olfactory nerve
Correct Answer: Glossopharyngeal nerve
Explanation:The loss of taste in the posterior third of the tongue is due to a problem with the glossopharyngeal nerve (CN IX). This is because the patient can taste when licking the ice cream, indicating that the anterior two-thirds of the tongue are functioning normally. The facial nerve also provides taste sensation, but only to the anterior two-thirds of the tongue, so it is not responsible for the loss of taste in the posterior third. The hypoglossal nerve is not involved in taste sensation, but rather in motor innervation of the tongue. The olfactory nerve innervates the nose, not the tongue, and there is no indication of a problem with the patient’s sense of smell.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 14
Incorrect
-
A 57-year-old man is having a carotid endarterectomy. In the neck, how many branches does the internal carotid artery give off after being mobilised?
Your Answer:
Correct Answer: 0
Explanation:The internal carotid artery originates from the common carotid artery near the upper border of the thyroid cartilage and travels upwards to enter the skull through the carotid canal. It then passes through the cavernous sinus and divides into the anterior and middle cerebral arteries. In the neck, it is surrounded by various structures such as the longus capitis, pre-vertebral fascia, sympathetic chain, and superior laryngeal nerve. It is also closely related to the external carotid artery, the wall of the pharynx, the ascending pharyngeal artery, the internal jugular vein, the vagus nerve, the sternocleidomastoid muscle, the lingual and facial veins, and the hypoglossal nerve. Inside the cranial cavity, the internal carotid artery bends forwards in the cavernous sinus and is closely related to several nerves such as the oculomotor, trochlear, ophthalmic, and maxillary nerves. It terminates below the anterior perforated substance by dividing into the anterior and middle cerebral arteries and gives off several branches such as the ophthalmic artery, posterior communicating artery, anterior choroid artery, meningeal arteries, and hypophyseal arteries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 15
Incorrect
-
A 55-year-old man visits his GP complaining of excessive thirst and urination for the past two weeks. Upon conducting various tests, it was determined that he has diabetes insipidus due to a hormone deficiency. Which gland is responsible for producing and releasing this hormone into the bloodstream?
Your Answer:
Correct Answer: Posterior pituitary
Explanation:ADH and oxytocin are secreted by the posterior pituitary.
When a person has diabetes insipidus, their kidneys are unable to concentrate urine due to a deficiency of antidiuretic hormone (ADH) or resistance to its action. This results in the production and excretion of a large volume of diluted urine.
The posterior pituitary, also known as the neurohypophysis, is the back part of the pituitary gland and is involved in the endocrine system. Unlike the anterior pituitary, it is not glandular and has a direct neural connection to the hypothalamus. It releases oxytocin and vasopressin/ADH directly into the bloodstream.
The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 16
Incorrect
-
A woman in her early fifties comes in with sensory loss on the left side and sensory neglect on the same side. The physician suspects the presence of a space-occupying lesion. Where is the most probable location of this lesion?
Your Answer:
Correct Answer: Right parietal lobe
Explanation:The parietal lobe is linked to sensation and sensory attention, and damage to it results in contralateral deficits. Therefore, right parietal lobe damage leads to left-sided deficits.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
You are asked to clerk a 73-year-old-man who presented with a fall. He was seen by the stroke team who requested a CT head. This excluded an intracranial haemorrhage and he was started on aspirin. When you enter the cubicle, you notice the patient has a right-sided facial droop.
What type of speech disturbance does this patient have? You start taking a history but find it difficult to understand what he says. He is unable to get the words out easily and his speech is non-fluent as if hesitating before uttering the words.
During the cranial nerve examination, he understood and followed your instructions well. However, he is unable to repeat words after you.Your Answer:
Correct Answer: Broca's dysphasia
Explanation:This man experienced a stroke that affected Broca’s area, resulting in Broca’s dysphasia. This condition causes non-fluent speech, but normal comprehension, and impaired repetition. Despite knowing what they want to say, patients with Broca’s dysphasia struggle to articulate their words. They can understand instructions, but have difficulty repeating words. This is different from conductive dysphasia, which presents with fluent speech but an inability to repeat words. Dysarthria, on the other hand, is characterized by difficulty articulating words due to a lack of coordination in the muscles of speech. Global aphasia is the inability to understand, repeat, and produce speech, which was not the case for this patient as they were able to understand instructions.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
During a ward round on the stroke ward, you notice a patient in their 60s responds to questions with unrelated words and phrases. His speech is technically good and fluent but the sentences make no sense. He does not appear to be aware of this and struggles to understand questions when written down.
Where is the location of the lesion producing this sign?Your Answer:
Correct Answer: Superior temporal gyrus
Explanation:Wernicke’s aphasia is caused by damage to the superior temporal gyrus, resulting in fluent speech but poor comprehension and characteristic ‘word salad’. Patients with this type of aphasia are often unaware of their errors.
Conduction aphasia, on the other hand, is caused by damage to the arcuate fasciculus, which connects Wernicke’s and Broca’s areas. This results in fluent speech with poor repetition, but patients are usually aware of their errors.
A lesion of the corpus callosum can cause more widespread problems with motor and sensory deficits due to impaired communication between the hemispheres.
Broca’s area, located in the inferior frontal gyrus, is responsible for expressive aphasia, where speech is non-fluent but comprehension is intact.
It’s important to note that true aphasia does not involve any motor deficits, so damage to the primary motor cortex would not be the cause.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
You have been requested by the GP to have a conversation with an 85-year-old man regarding his recent diagnosis of Alzheimer's disease. Alzheimer's is the most prevalent cause of dementia in the UK, and it is characterized by the abnormal hyperphosphorylation and aggregation of tau protein, which is primarily found in neurons. What is the typical outcome of this protein's hyperphosphorylation or abnormal phosphorylation?
Your Answer:
Correct Answer: Reduced binding to microtubules, and reduced microtubule stability
Explanation:The binding of Tau protein to microtubules, which helps to stabilize their assembly, is inhibited by phosphorylation. This can lead to decreased microtubule stability. Blood pressure is not typically impacted by this process. Lewy bodies are more commonly associated with Parkinson’s disease, while reduced acetylcholine receptors at the neuromuscular junction are a hallmark of myasthenia gravis.
Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.
The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.
Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.
-
This question is part of the following fields:
- Neurological System
-
-
Question 20
Incorrect
-
A 56-year-old woman undergoes a serum calcium test. If her renal function is normal, what percentage of calcium filtered by the glomerulus will be reabsorbed by the renal tubules?
Your Answer:
Correct Answer: 95%
Explanation:Maintaining Calcium Balance in the Body
Calcium ions are essential for various physiological processes in the body, and the largest store of calcium is found in the skeleton. The levels of calcium in the body are regulated by three hormones: parathyroid hormone (PTH), vitamin D, and calcitonin.
PTH increases calcium levels and decreases phosphate levels by increasing bone resorption and activating osteoclasts. It also stimulates osteoblasts to produce a protein signaling molecule that activates osteoclasts, leading to bone resorption. PTH increases renal tubular reabsorption of calcium and the synthesis of 1,25(OH)2D (active form of vitamin D) in the kidney, which increases bowel absorption of calcium. Additionally, PTH decreases renal phosphate reabsorption.
Vitamin D, specifically the active form 1,25-dihydroxycholecalciferol, increases plasma calcium and plasma phosphate levels. It increases renal tubular reabsorption and gut absorption of calcium, as well as osteoclastic activity. Vitamin D also increases renal phosphate reabsorption in the proximal tubule.
Calcitonin, secreted by C cells of the thyroid, inhibits osteoclast activity and renal tubular absorption of calcium.
Although growth hormone and thyroxine play a small role in calcium metabolism, the primary regulation of calcium levels in the body is through PTH, vitamin D, and calcitonin. Maintaining proper calcium balance is crucial for overall health and well-being.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 28-year-old woman presents to the Emergency Department complaining of a headache and blurred vision. The headache began 2 days ago and is aggravated by coughing and changing position. The blurred vision started 5 hours ago. She has no history of head injuries and has never experienced these symptoms before. Her BMI is 27 kg/m² and she is currently taking the combined oral contraceptive pill.
Upon examination, the patient has difficulty abducting her left eye. Fundoscopy reveals bilateral papilloedema.
Vital signs:
Blood pressure: 130/90 mmHg
Heart rate: 80 bpm
Respiratory rate: 16/min
What is the most probable diagnosis?Your Answer:
Correct Answer: Idiopathic intracranial hypertension
Explanation:The patient’s difficulty in abducting the right eye and accompanying 6th nerve palsy, along with papilloedema, are indicative of idiopathic intracranial hypertension. This is further supported by the patient’s age, BMI, and COCP use, which are common risk factors for this condition. Acute-angle closure glaucoma, meningitis, and migraine are less likely explanations as they do not fully align with the patient’s symptoms and history.
Understanding Idiopathic Intracranial Hypertension
Idiopathic intracranial hypertension, also known as pseudotumour cerebri, is a medical condition that is commonly observed in young, overweight females. The condition is characterized by a range of symptoms, including headache, blurred vision, and papilloedema, which is usually present. Other symptoms may include an enlarged blind spot and sixth nerve palsy.
There are several risk factors associated with idiopathic intracranial hypertension, including obesity, female sex, pregnancy, and certain drugs such as the combined oral contraceptive pill, steroids, tetracyclines, vitamin A, and lithium.
Management of idiopathic intracranial hypertension may involve weight loss, diuretics such as acetazolamide, and topiramate, which can also cause weight loss in most patients. Repeated lumbar puncture may also be necessary, and surgery may be required to prevent damage to the optic nerve. This may involve optic nerve sheath decompression and fenestration, or a lumboperitoneal or ventriculoperitoneal shunt to reduce intracranial pressure.
It is important to note that if intracranial hypertension is thought to occur secondary to a known cause, such as medication, it is not considered idiopathic. Understanding the risk factors and symptoms associated with idiopathic intracranial hypertension can help individuals seek appropriate medical attention and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 22
Incorrect
-
A senior citizen has a cervical disc prolapse in his spine resulting in spinal cord injury due to compression by the disc. Considering the anatomy of the spinal cord, which cell groups and their corresponding functions are likely to be affected at the site of injury?
Your Answer:
Correct Answer: Ventral horn cells and a motor defect
Explanation:Motor defects are caused by lesions in the anterior cord as it contains the cell bodies of lower motor neurons in the ventral horns of the grey matter. Injuries to the ventral region are more likely to affect motor function at the level of injury. On the other hand, dorsal injuries result in sensory defects as the dorsal horns receive input from primary sensory neurons. The intermediate horns are not present in the cervical spine and are unlikely to be affected by anterior injuries.
The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.
One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Incorrect
-
A 16-year-old female arrives at the emergency department accompanied by her father. According to him, she was watching TV when she suddenly complained of a tingling sensation on the left side of her body. She then reported that her leg had gone numb. Her father mentions that both he and his sister have epilepsy. Given her altered spatial perception and sensation, you suspect that she may have experienced a seizure. What type of seizure is most probable?
Your Answer:
Correct Answer: Parietal lobe seizure
Explanation:Paresthesia is a symptom that can help identify a parietal lobe seizure.
When a patient experiences a parietal lobe seizure, they may feel a tingling sensation on one side of their body or even experience numbness in certain areas. This type of seizure is not very common and is typically associated with sensory symptoms.
On the other hand, occipital lobe seizures tend to cause visual disturbances like seeing flashes or floaters. Temporal lobe seizures can lead to hallucinations, which can affect the senses of hearing, taste, and smell. Additionally, they may cause repetitive movements like lip smacking or grabbing.
Absence seizures are more commonly seen in children between the ages of 3 and 10. These seizures are brief and cause the person to stop what they are doing and stare off into space with a blank expression. Fortunately, most children with absence seizures will outgrow them by adolescence.
Finally, frontal lobe seizures often cause movements of the head or legs and can result in a period of weakness after the seizure has ended.
Localising Features of Focal Seizures in Epilepsy
Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.
On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.
-
This question is part of the following fields:
- Neurological System
-
-
Question 24
Incorrect
-
A 30-year-old woman visits the doctor's office complaining of nausea and vomiting. Upon taking a pregnancy test, it is discovered that she is indeed pregnant. Can you identify the location of the chemoreceptor trigger zone?
Your Answer:
Correct Answer: Area postrema (medulla)
Explanation:The vomiting process is initiated by the chemoreceptor trigger zone, which receives signals from various sources such as the gastrointestinal tract, hormones, and drugs. This zone is located in the area postrema, which is situated on the floor of the 4th ventricle in the medulla. It is noteworthy that the area postrema is located outside the blood-brain barrier. The nucleus of tractus solitarius, which is also located in the medulla, contains autonomic centres that play a role in the vomiting reflex. This nucleus receives signals from the chemoreceptor trigger zone. The vomiting centres in the brain receive inputs from different areas, including the gastrointestinal tract and the vestibular system of the inner ear.
Vomiting is the involuntary act of expelling the contents of the stomach and sometimes the intestines. This is caused by a reverse peristalsis and abdominal contraction. The vomiting center is located in the medulla oblongata and is activated by receptors in various parts of the body. These include the labyrinthine receptors in the ear, which can cause motion sickness, the over distention receptors in the duodenum and stomach, the trigger zone in the central nervous system, which can be affected by drugs such as opiates, and the touch receptors in the throat. Overall, vomiting is a reflex action that is triggered by various stimuli and is controlled by the vomiting center in the brainstem.
-
This question is part of the following fields:
- Neurological System
-
-
Question 25
Incorrect
-
A 74-year-old man with oesophageal cancer undergoes a CT scan to evaluate cancer staging. The medical team is worried about the cancer's rapid growth. What is the level at which the oesophagus passes through the diaphragm?
Your Answer:
Correct Answer: T10
Explanation:The diaphragmatic opening for the oesophagus is situated at the T10 level, while the T8 level corresponds to the opening for the inferior vena cava.
Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
An 80-year-old man arrives at the emergency department with intense shooting pain on one side of his face that is aggravated by chewing. Which of the following accurately identifies the location where the maxillary (V2) and mandibular nerves (V3) exit the skull?
Your Answer:
Correct Answer: V2 - foramen rotundum, V3 - foramen ovale
Explanation:Trigeminal nerve branches exit the skull with Standing Room Only:
V1 – Superior orbital fissure
V2 – Foramen rotundum
V3 – Foramen ovaleThe trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
A 13-year-old boy comes to the clinic with his mother complaining of ear pain. He experienced the pain last night and was unable to sleep. As a result, he stayed home from school today. He reports that sounds are muffled on the affected side. During the examination, he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid level, indicating a middle ear infection. The nerve to tensor tympani arises from which nerve?
Your Answer:
Correct Answer: Mandibular nerve
Explanation:The mandibular nerve is the correct answer. It is the only division of the trigeminal nerve that carries motor fibers. The vestibulocochlear nerve is the eighth cranial nerve and has two components for balance and hearing. The glossopharyngeal nerve is the ninth cranial nerve and has various functions, including taste and sensation from the tongue, pharyngeal wall, and tonsils. The maxillary nerve carries only sensory fibers. The facial nerve is the seventh cranial nerve and supplies the muscles of facial expression and taste from the anterior two-thirds of the tongue. Tensor tympani is a muscle that dampens loud noises and is innervated through the nerve to tensor tympani, which arises from the mandibular nerve. The patient’s ear pain is likely due to otitis media, which is confirmed on otoscopy.
The trigeminal nerve is the main sensory nerve of the head and also innervates the muscles of mastication. It has sensory distribution to the scalp, face, oral cavity, nose and sinuses, and dura mater, and motor distribution to the muscles of mastication, mylohyoid, anterior belly of digastric, tensor tympani, and tensor palati. The nerve originates at the pons and has three branches: ophthalmic, maxillary, and mandibular. The ophthalmic and maxillary branches are sensory only, while the mandibular branch is both sensory and motor. The nerve innervates various muscles, including the masseter, temporalis, and pterygoids.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 55-year-old woman is involved in a car accident and is admitted to a neuro-rehabilitation ward for her recovery. During her cranial nerve examination, it is found that she has left-sided homonymous inferior quadrantanopia and difficulty reading. Her family reports that she can no longer read the newspaper or do sudokus, which she used to enjoy before the accident. Based on these symptoms, which area of the brain is likely to be damaged?
Your Answer:
Correct Answer: Parietal lobe
Explanation:Alexia may be caused by lesions in the parietal lobe.
This is because damage to the parietal lobe can result in various symptoms, including alexia, agraphia, acalculia, hemi-spatial neglect, and homonymous inferior quadrantanopia. Other possible symptoms may include loss of sensation, apraxias, or astereognosis.
The cerebellum is not the correct answer, as damage to this region can cause symptoms such as dysdiadochokinesia, ataxia, nystagmus, intention tremor, scanning dysarthria, and positive heel-shin test.
Similarly, the frontal lobe is not the correct answer, as damage to this region can result in anosmia, Broca’s dysphasia, changes in personality, and motor deficits.
The occipital lobe is also not the correct answer, as damage to this region can cause visual disturbances.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 29
Incorrect
-
A young man presents with loss of fine-touch and vibration sensation on the right side of his body. He also shows a loss of proprioception on the same side. What anatomical structure is likely to have been damaged?
Your Answer:
Correct Answer: Right dorsal column
Explanation:Spinal cord lesions can affect different tracts and result in various clinical symptoms. Motor lesions, such as amyotrophic lateral sclerosis and poliomyelitis, affect either upper or lower motor neurons, resulting in spastic paresis or lower motor neuron signs. Combined motor and sensory lesions, such as Brown-Sequard syndrome, subacute combined degeneration of the spinal cord, Friedrich’s ataxia, anterior spinal artery occlusion, and syringomyelia, affect multiple tracts and result in a combination of spastic paresis, loss of proprioception and vibration sensation, limb ataxia, and loss of pain and temperature sensation. Multiple sclerosis can involve asymmetrical and varying spinal tracts and result in a combination of motor, sensory, and ataxia symptoms. Sensory lesions, such as neurosyphilis, affect the dorsal columns and result in loss of proprioception and vibration sensation.
-
This question is part of the following fields:
- Neurological System
-
-
Question 30
Incorrect
-
A 65-year-old male arrives at the emergency department with a sudden onset of numbness on the lateral aspect of his calf and an inability to dorsiflex his foot. Which nerve is most likely affected in this presentation?
Your Answer:
Correct Answer: Common peroneal nerve
Explanation:The most frequent reason for foot drop is a lesion in the common peroneal nerve.
The common peroneal nerve is responsible for providing sensation to the posterolateral part of the leg and controlling the anterior and lateral compartments of the lower leg. If it is compressed or damaged, it can result in foot drop.
While the sciatic nerve divides into the common peroneal nerve, it would cause additional symptoms.
The femoral nerve only innervates the upper thigh and inner leg, so it would not cause foot drop.
The tibial nerve is the other branch of the sciatic nerve and controls the muscles in the posterior compartment of the leg.
The posterior femoral cutaneous nerve is responsible for providing sensation to the skin of the posterior aspect of the thigh.
Understanding Foot Drop: Causes and Examination
Foot drop is a condition that occurs when the foot dorsiflexors become weak. This can be caused by various factors, including a common peroneal nerve lesion, L5 radiculopathy, sciatic nerve lesion, superficial or deep peroneal nerve lesion, or central nerve lesions. However, the most common cause is a common peroneal nerve lesion, which is often due to compression at the neck of the fibula. This can be triggered by certain positions, prolonged confinement, recent weight loss, Baker’s cysts, or plaster casts to the lower leg.
To diagnose foot drop, a thorough examination is necessary. If the patient has an isolated peroneal neuropathy, there will be weakness of foot dorsiflexion and eversion, and reflexes will be normal. Weakness of hip abduction is suggestive of an L5 radiculopathy. Bilateral symptoms, fasciculations, or other abnormal neurological findings are indications for specialist referral.
If foot drop is diagnosed, conservative management is appropriate. Patients should avoid leg crossing, squatting, and kneeling. Symptoms typically improve over 2-3 months.
-
This question is part of the following fields:
- Neurological System
-
-
Question 31
Incorrect
-
A 65-year-old man presents to the clinic for a follow-up after experiencing a stroke two weeks ago. His strength is 5/5 in all four limbs and his deep muscle reflexes are normal. He has no visual deficits, but he is having difficulty answering questions correctly and his speech is filled with newly invented words, although it is fluent. Additionally, he is unable to read correctly. Which blood vessel is most likely involved in his stroke?
Your Answer:
Correct Answer: Inferior division of the left middle cerebral artery
Explanation:The correct answer is that Wernicke’s area is supplied by the inferior division of the left middle cerebral artery. This type of stroke can result in Wernicke’s aphasia, which is characterized by poor comprehension but normal fluency of speech. Wernicke’s area is located in the temporal gyrus and is specifically supplied by the inferior division of the left middle cerebral artery.
The other options provided are incorrect. A stroke in the basilar artery can result in the locked-in syndrome, which causes paralysis of the entire body except for eye movement. A stroke in the left anterior cerebral artery can cause behavioral changes, contralateral weakness, and contralateral sensory deficits. A stroke in the right posterior cerebral artery can cause visual deficits.
Types of Aphasia: Understanding the Different Forms of Language Impairment
Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.
Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.
Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.
Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 32
Incorrect
-
A 78-year-old man arrives at the emergency department after his wife found him unresponsive this morning. According to her, he fell out of bed and hit his head on the bedside table during the night. Upon examination, the man responds to pain but not to voice. A CT scan of his head reveals an extradural hematoma, which is often caused by a rupture of the middle meningeal artery. What is the source of the middle meningeal artery?
Your Answer:
Correct Answer: Maxillary artery
Explanation:The middle meningeal artery is a branch of the maxillary artery, which is one of two terminal branches of the external carotid artery. It supplies the dura and skin of the anterior face. Other branches of the maxillary artery include the inferior alveolar artery, buccal artery, deep temporal artery, and sphenopalatine artery. Extradural haemorrhage, which is bleeding into the space between the dura mater and the skull, is commonly caused by rupture of the middle meningeal artery following head trauma.
The Middle Meningeal Artery: Anatomy and Clinical Significance
The middle meningeal artery is a branch of the maxillary artery, which is one of the two terminal branches of the external carotid artery. It is the largest of the three arteries that supply the meninges, the outermost layer of the brain. The artery runs through the foramen spinosum and supplies the dura mater. It is located beneath the pterion, where the skull is thin, making it vulnerable to injury. Rupture of the artery can lead to an Extradural hematoma.
In the dry cranium, the middle meningeal artery creates a deep indentation in the calvarium. It is intimately associated with the auriculotemporal nerve, which wraps around the artery. This makes the two structures easily identifiable in the dissection of human cadavers and also easily damaged in surgery.
Overall, understanding the anatomy and clinical significance of the middle meningeal artery is important for medical professionals, particularly those involved in neurosurgery.
-
This question is part of the following fields:
- Neurological System
-
-
Question 33
Incorrect
-
You are a medical student on an endocrine ward. There is a 65-year-old patient on the ward suffering from hypopituitarism. One of the junior doctors explains to you that the patient's pituitary gland was damaged when they received radiation therapy for a successfully treated brain tumour last year. He shows you a CT scan and demonstrates that only the anterior pituitary gland is damaged, with the posterior pituitary gland unaffected.
Which of the following hormones is unlikely to be affected?Your Answer:
Correct Answer: antidiuretic hormone
Explanation:The pituitary gland is a small gland located within the sella turcica in the sphenoid bone of the middle cranial fossa. It weighs approximately 0.5g and is covered by a dural fold. The gland is attached to the hypothalamus by the infundibulum and receives hormonal stimuli from the hypothalamus through the hypothalamo-pituitary portal system. The anterior pituitary, which develops from a depression in the wall of the pharynx known as Rathkes pouch, secretes hormones such as ACTH, TSH, FSH, LH, GH, and prolactin. GH and prolactin are secreted by acidophilic cells, while ACTH, TSH, FSH, and LH are secreted by basophilic cells. On the other hand, the posterior pituitary, which is derived from neuroectoderm, secretes ADH and oxytocin. Both hormones are produced in the hypothalamus before being transported by the hypothalamo-hypophyseal portal system.
-
This question is part of the following fields:
- Neurological System
-
-
Question 34
Incorrect
-
A 27-year-old male with a history of paraplegia, due to C5 spinal cord injury sustained 8 weeks prior, is currently admitted to an orthopaedic and spinal ward. One night, he wakes up in distress with a headache and diaphoresis above the level of his spinal cord injury. His blood pressure is currently 160/110 mmHg. It was recorded 2 hours ago as 110/70mmHg. His pulse rate is 50. The patient also has an indwelling catheter which was changed earlier today.
The healthcare provider on-call suspects that autonomic dysreflexia might be the cause of the patient's symptoms.
What is the most common life-threatening outcome associated with this condition?Your Answer:
Correct Answer: Haemorrhagic stroke
Explanation:Autonomic dysreflexia is a condition that occurs in patients who have suffered a spinal cord injury at or above the T6 spinal level. It is caused by a reflex response triggered by various stimuli, such as faecal impaction or urinary retention, which sends signals through the thoracolumbar outflow. However, due to the spinal cord lesion, the usual parasympathetic response is prevented, leading to an unbalanced physiological response. This response is characterized by extreme hypertension, flushing, and sweating above the level of the cord lesion, as well as agitation. If left untreated, severe consequences such as haemorrhagic stroke can occur. The management of autonomic dysreflexia involves removing or controlling the stimulus and treating any life-threatening hypertension and/or bradycardia.
-
This question is part of the following fields:
- Neurological System
-
-
Question 35
Incorrect
-
A 25-year-old male is at the doctor's office with his girlfriend, reporting that she sleepwalks at night. During which stage of the sleep cycle is this most likely to happen?
Your Answer:
Correct Answer: Non-REM stage 3 (N3)
Explanation:Understanding Sleep Stages: The Sleep Doctor’s Brain
Sleep is a complex process that involves different stages, each with its own unique characteristics. The Sleep Doctor’s Brain provides a simplified explanation of the four main sleep stages: N1, N2, N3, and REM.
N1 is the lightest stage of sleep, characterized by theta waves and often associated with hypnic jerks. N2 is a deeper stage of sleep, marked by sleep spindles and K-complexes. This stage represents around 50% of total sleep. N3 is the deepest stage of sleep, characterized by delta waves. Parasomnias such as night terrors, nocturnal enuresis, and sleepwalking can occur during this stage.
REM, or rapid eye movement, is the stage where dreaming occurs. It is characterized by beta-waves and a loss of muscle tone, including erections. The sleep cycle typically follows a pattern of N1 → N2 → N3 → REM, with each stage lasting for different durations throughout the night.
Understanding the different sleep stages is important for maintaining healthy sleep habits and identifying potential sleep disorders. By monitoring brain activity during sleep, the Sleep Doctor’s Brain can provide valuable insights into the complex process of sleep.
-
This question is part of the following fields:
- Neurological System
-
-
Question 36
Incorrect
-
A 28-year-old female experienced a crush injury while working, causing an air vent to fall and trap her arm. As a result, she developed fixed focal dystonia that led to flexion contracture of her right wrist and digits.
During the examination, the doctor observed intrinsic hand muscle wasting. The patient's right forearm was supinated, her wrist was hyperextended, and her fingers were flexed. Additionally, there was a decrease in sensation along the medial aspect of her hand and arm, and a reduction in handgrip strength.
Which nerve roots are affected in this case?Your Answer:
Correct Answer: C8/T1
Explanation:T1 nerve root damage can result in Klumpke’s paralysis.
Brachial Plexus Injuries: Erb-Duchenne and Klumpke’s Paralysis
Erb-Duchenne paralysis is a type of brachial plexus injury that results from damage to the C5 and C6 roots. This can occur during a breech presentation, where the baby’s head and neck are pulled to the side during delivery. Symptoms of Erb-Duchenne paralysis include weakness or paralysis of the arm, shoulder, and hand, as well as a winged scapula.
On the other hand, Klumpke’s paralysis is caused by damage to the T1 root of the brachial plexus. This type of injury typically occurs due to traction, such as when a baby’s arm is pulled during delivery. Klumpke’s paralysis can result in a loss of intrinsic hand muscles, which can affect fine motor skills and grip strength.
It is important to note that brachial plexus injuries can have long-term effects on a person’s mobility and quality of life. Treatment options may include physical therapy, surgery, or a combination of both. Early intervention is key to improving outcomes and minimizing the impact of these injuries.
-
This question is part of the following fields:
- Neurological System
-
-
Question 37
Incorrect
-
A 45-year-old patient, Maria, arrives at the emergency department (ED) with complaints of right-sided facial weakness upon waking up. Maria's right eyebrow and the right corner of her mouth are drooped. Additionally, Maria is experiencing difficulty tolerating the noise in the ED, stating that everything sounds excessively loud.
What reflex is expected to be absent based on the most probable diagnosis?Your Answer:
Correct Answer: Corneal reflex
Explanation:The corneal reflex is a reflex where the eye blinks in response to corneal stimulation. The afferent limb is the ophthalmic branch of the trigeminal nerve, while the efferent limb is the facial nerve. This reflex is correctly identified in the scenario.
However, the most likely diagnosis for Iole’s symptoms is Bell’s palsy, which is a palsy of the facial nerve (CN VII) that presents with unilateral facial weakness, forehead involvement, and hyperacusis. The gag reflex, jaw jerk reflex, and pupillary light reflex are not relevant to this scenario.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 38
Incorrect
-
A 65-year-old patient with a history of Parkinson's disease visits your clinic to discuss their medications. During their recent neurology appointment, they were advised to increase the dosage of one of their medications due to worsening symptoms, but they cannot recall which one. To aid their memory, you initiate a conversation about the medications and their effects on neurotransmitters. Which neurotransmitter is predominantly impacted in Parkinson's disease?
Your Answer:
Correct Answer: Dopamine
Explanation:Parkinson’s disease primarily affects dopaminergic neurons that project from the substantia nigra to the basal ganglia striatum. This is important to note as the condition is commonly treated with medications that increase dopamine levels, such as levodopa, dopamine agonists, and monoamine-oxidase-B inhibitors.
Serotonin is a neurotransmitter with a wide range of functions and is commonly used in medications such as antidepressants, antiemetics, and antipsychotics.
GABA primarily acts on inhibitory neurons and is important in the mechanism of drugs like benzodiazepines and barbiturates.
Acetylcholine is a neurotransmitter found at the neuromuscular junction and has roles within the central and autonomic nervous systems. It is important in conditions like myasthenia gravis and with drugs like atropine and neostigmine.
Noradrenaline is a catecholamine with various functions in the brain and activates the sympathetic nervous system outside of the brain. It is commonly used in anaesthetics and emergency situations and is an important mediator with drugs like beta-blockers.
Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.
-
This question is part of the following fields:
- Neurological System
-
-
Question 39
Incorrect
-
A 21-year-old male visits the GP complaining of a sore and itchy eye upon waking up. Upon examination, the right eye appears red with a discharge of mucopurulent nature. The patient has a medical history of asthma and eczema and is currently using a salbutamol inhaler. Based on this information, what is the most probable diagnosis?
Your Answer:
Correct Answer: Bacterial conjunctivitis
Explanation:A mucopurulent discharge is indicative of bacterial conjunctivitis, which is likely in this patient presenting with an itchy, red eye. Although the patient has a history of asthma and eczema, allergic rhinitis would not produce a mucopurulent discharge. Viral conjunctivitis, the most common type of conjunctivitis, is associated with a watery discharge. A corneal ulcer, on the other hand, is characterized by pain and a watery eye.
Infective conjunctivitis is a common eye problem that is often seen in primary care. It is characterized by red, sore eyes that are accompanied by a sticky discharge. There are two types of infective conjunctivitis: bacterial and viral. Bacterial conjunctivitis is identified by a purulent discharge and eyes that may be stuck together in the morning. On the other hand, viral conjunctivitis is characterized by a serous discharge and recent upper respiratory tract infection, as well as preauricular lymph nodes.
In most cases, infective conjunctivitis is a self-limiting condition that resolves on its own within one to two weeks. However, patients are often offered topical antibiotic therapy, such as Chloramphenicol or topical fusidic acid. Chloramphenicol drops are given every two to three hours initially, while chloramphenicol ointment is given four times a day initially. Topical fusidic acid is an alternative and should be used for pregnant women. For contact lens users, topical fluoresceins should be used to identify any corneal staining, and treatment should be the same as above. It is important to advise patients not to share towels and to avoid wearing contact lenses during an episode of conjunctivitis. School exclusion is not necessary.
-
This question is part of the following fields:
- Neurological System
-
-
Question 40
Incorrect
-
A 21-year-old female is admitted with suspected meningitis. The House Officer is about to perform a lumbar puncture. What is the initial structure that the needle is likely to encounter upon insertion?
Your Answer:
Correct Answer: Supraspinous ligament
Explanation:Lumbar Puncture Procedure
Lumbar puncture is a medical procedure that involves obtaining cerebrospinal fluid. In adults, the procedure is typically performed at the L3/L4 or L4/5 interspace, which is located below the spinal cord’s termination at L1.
During the procedure, the needle passes through several layers. First, it penetrates the supraspinous ligament, which connects the tips of spinous processes. Then, it passes through the interspinous ligaments between adjacent borders of spinous processes. Next, the needle penetrates the ligamentum flavum, which may cause a give. Finally, the needle passes through the dura mater into the subarachnoid space, which is marked by a second give. At this point, clear cerebrospinal fluid should be obtained.
Overall, the lumbar puncture procedure is a complex process that requires careful attention to detail. By following the proper steps and guidelines, medical professionals can obtain cerebrospinal fluid safely and effectively.
-
This question is part of the following fields:
- Neurological System
-
-
Question 41
Incorrect
-
Which one of the following structures lies posterior to the femoral nerve in the femoral triangle?
Your Answer:
Correct Answer: Iliacus
Explanation:The femoral nerve is located in front of the iliacus muscle within the femoral triangle. Meanwhile, the iliacus and pectineus muscles are situated behind the femoral sheath.
The femoral nerve is a nerve that originates from the spinal roots L2, L3, and L4. It provides innervation to several muscles in the thigh, including the pectineus, sartorius, quadriceps femoris, and vastus lateralis, medialis, and intermedius. Additionally, it branches off into the medial cutaneous nerve of the thigh, saphenous nerve, and intermediate cutaneous nerve of the thigh. The femoral nerve passes through the psoas major muscle and exits the pelvis by going under the inguinal ligament. It then enters the femoral triangle, which is located lateral to the femoral artery and vein.
To remember the femoral nerve’s supply, a helpful mnemonic is don’t MISVQ scan for PE. This stands for the medial cutaneous nerve of the thigh, intermediate cutaneous nerve of the thigh, saphenous nerve, vastus, quadriceps femoris, and sartorius, with the addition of the pectineus muscle. Overall, the femoral nerve plays an important role in the motor and sensory functions of the thigh.
-
This question is part of the following fields:
- Neurological System
-
-
Question 42
Incorrect
-
A patient arrives at the Emergency Department after being involved in a car crash where her leg was trapped and compressed for a prolonged period. She has a nerve injury that displays axonal damage while preserving the myelin sheath. However, after 48 hours, there is additional axonal degeneration distal to the injury, and tissue macrophages begin to phagocytose the myelin sheath. What is the most appropriate term to describe this type of nerve injury?
Your Answer:
Correct Answer: Axonotmesis
Explanation:Crush injuries to nerves typically result in axonotmesis, which involves axonal damage but preservation of the myelin sheath. While recovery is possible, it tends to be slow.
Nerve injuries can be classified into three types: neuropraxia, axonotmesis, and neurotmesis. Neuropraxia occurs when the nerve is intact but its electrical conduction is affected. However, full recovery is possible, and autonomic function is preserved. Wallerian degeneration, which is the degeneration of axons distal to the site of injury, does not occur. Axonotmesis, on the other hand, happens when the axon is damaged, but the myelin sheath is preserved, and the connective tissue framework is not affected. Wallerian degeneration occurs in this type of injury. Lastly, neurotmesis is the most severe type of nerve injury, where there is a disruption of the axon, myelin sheath, and surrounding connective tissue. Wallerian degeneration also occurs in this type of injury.
Wallerian degeneration typically begins 24-36 hours following the injury. Axons are excitable before degeneration occurs, and the myelin sheath degenerates and is phagocytosed by tissue macrophages. Neuronal repair may only occur physiologically where nerves are in direct contact. However, nerve regeneration may be hampered when a large defect is present, and it may not occur at all or result in the formation of a neuroma. If nerve regrowth occurs, it typically happens at a rate of 1mm per day.
-
This question is part of the following fields:
- Neurological System
-
-
Question 43
Incorrect
-
John is a 35-year-old man who was discharged 3 days ago from hospital, after sustaining an injury to his head. Observations and imaging were all normal and there was no neurological deficit on examination. Since then he has noticed difficulty in going upstairs. He says that he can't see where he is going and becomes very unsteady. His wife also told him that he has started to tilt his head to the right, which he was unaware of.
On examination, his visual acuity is 6/6 but he has difficulty looking up and out with his right eye, no other abnormality is revealed.
What is the most likely diagnosis?Your Answer:
Correct Answer: Trochlear nerve palsy
Explanation:Consider 4th nerve palsy if your vision deteriorates while descending stairs.
Understanding Fourth Nerve Palsy
Fourth nerve palsy is a condition that affects the superior oblique muscle, which is responsible for depressing the eye and moving it inward. One of the main features of this condition is vertical diplopia, which is double vision that occurs when looking straight ahead. This is often noticed when reading a book or going downstairs. Another symptom is subjective tilting of objects, also known as torsional diplopia. Patients may also develop a head tilt, which they may or may not be aware of. When looking straight ahead, the affected eye appears to deviate upwards and is rotated outwards. Understanding the symptoms of fourth nerve palsy can help individuals seek appropriate treatment and management for this condition.
-
This question is part of the following fields:
- Neurological System
-
-
Question 44
Incorrect
-
A 25 year old male arrives at the Emergency Department after being struck in the back of the head with a baseball bat. He reports a headache and has a laceration on his occiput. He is alert and oriented, following commands and able to provide a detailed description of the incident.
What is his Glasgow coma scale (GCS)?Your Answer:
Correct Answer: 15
Explanation:The GCS score for this patient is 654, which stands for Motor (6 points), Verbal (5 points), and Eye opening (4 points). This scoring system is used to evaluate a patient’s level of consciousness by assessing their response to voice, eye movements, and motor function.
GCS is frequently used in patients with head injuries to monitor changes in their neurological status, which may indicate swelling or bleeding.
In this case, the patient’s eyes are open (4 out of 4), she is fully oriented in time, place, and person (5 out of 5), and she is able to follow commands (6 out of 6).
Understanding the Glasgow Coma Scale for Adults
The Glasgow Coma Scale (GCS) is a tool used to assess the level of consciousness in adults who have suffered a brain injury or other neurological condition. It is based on three components: motor response, verbal response, and eye opening. Each component is scored on a scale from 1 to 6, with a higher score indicating a better level of consciousness.
The motor response component assesses the patient’s ability to move in response to stimuli. A score of 6 indicates that the patient is able to obey commands, while a score of 1 indicates no movement at all.
The verbal response component assesses the patient’s ability to communicate. A score of 5 indicates that the patient is fully oriented, while a score of 1 indicates no verbal response at all.
The eye opening component assesses the patient’s ability to open their eyes. A score of 4 indicates that the patient is able to open their eyes spontaneously, while a score of 1 indicates no eye opening at all.
The GCS score is expressed as a combination of the scores from each component, with the motor response score listed first, followed by the verbal response score, and then the eye opening score. For example, a GCS score of 13, M5 V4 E4 at 21:30 would indicate that the patient had a motor response score of 5, a verbal response score of 4, and an eye opening score of 4 at 9:30 pm.
Overall, the Glasgow Coma Scale is a useful tool for healthcare professionals to assess the level of consciousness in adults with neurological conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 45
Incorrect
-
A 85-year-old man is brought to the emergency department after collapsing at home. He has a history of hypertension and poorly controlled type 2 diabetes. During examination, he complains of right-sided facial pain and left-sided arm pain, and mentions that the room appears to be spinning. The patient also has reduced temperature sensation on the right side of his face and the left side of his body, an ataxic gait, and vomits during the examination. Which artery is the most likely to be affected?
Your Answer:
Correct Answer: Posterior inferior cerebellar artery
Explanation:The correct diagnosis for a patient presenting with sudden onset vertigo and vomiting, dysphagia, ipsilateral facial pain and temperature loss, contralateral limb pain and temperature loss, and ataxia is posterior inferior cerebellar artery. This constellation of symptoms is consistent with lateral medullary syndrome, also known as Wallenberg syndrome, which is caused by ischemia of the lateral medulla. This condition is associated with involvement of the trigeminal nucleus, lateral spinothalamic tract, cerebellum, and nucleus ambiguus, resulting in the aforementioned symptoms.
The anterior spinal artery, basilar artery, middle cerebral artery, and posterior cerebral artery are not associated with lateral medullary syndrome and would present with different symptoms.
Stroke can affect different parts of the brain depending on which artery is affected. If the anterior cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the lower extremities being more affected than the upper. If the middle cerebral artery is affected, the person may experience weakness and loss of sensation on the opposite side of the body, with the upper extremities being more affected than the lower. They may also experience vision loss and difficulty with language. If the posterior cerebral artery is affected, the person may experience vision loss and difficulty recognizing objects.
Lacunar strokes are a type of stroke that are strongly associated with hypertension. They typically present with isolated weakness or loss of sensation on one side of the body, or weakness with difficulty coordinating movements. They often occur in the basal ganglia, thalamus, or internal capsule.
-
This question is part of the following fields:
- Neurological System
-
-
Question 46
Incorrect
-
A 78-year-old man is undergoing evaluation for a cognitive impairment and suspected movement disorder. Various scans are ordered to aid in the assessment.
The scan findings are as follows:
MRI head reveals typical age-related alterations
SPECT scan shows decreased dopaminergic activity in the substantia nigra
Based on the above results, what is the probable diagnosis?Your Answer:
Correct Answer: Parkinson's disease
Explanation:Neurodegenerative diseases are a group of disorders that affect the nervous system and lead to progressive deterioration of its functions. Parkinson’s disease is a common example of a basal ganglia disorder, which is characterized by the loss of dopamine-producing neurons in the substantia nigra. This results in motor symptoms such as bradykinesia, muscle rigidity, tremor, and postural instability, as well as cognitive, mood, and behavioral changes.
Alzheimer’s dementia, on the other hand, is not associated with a movement disorder but is characterized by atrophy of the medial temporal lobe and temporoparietal cortex, which can be seen on CT and MRI scans.
Huntington’s disease is another basal ganglia disorder, but it primarily affects the striatum, leading to a loss of striatal volume on CT and MRI scans. The movement disorder seen in Huntington’s disease is chorea, which is characterized by jerky, uncontrollable limb movements.
Multi-system atrophy is a rare neurodegenerative disease that affects the basal ganglia and cerebellum, leading to autonomic dysfunction, ataxia, and Parkinsonism. However, cognitive impairment is uncommon in this disorder.
Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.
-
This question is part of the following fields:
- Neurological System
-
-
Question 47
Incorrect
-
In the proximal third of the upper arm, where is the musculocutaneous nerve situated?
Your Answer:
Correct Answer: Between the biceps brachii and brachialis muscles
Explanation:The biceps and brachialis muscles are located on either side of the musculocutaneous nerve.
The Musculocutaneous Nerve: Function and Pathway
The musculocutaneous nerve is a nerve branch that originates from the lateral cord of the brachial plexus. Its pathway involves penetrating the coracobrachialis muscle and passing obliquely between the biceps brachii and the brachialis to the lateral side of the arm. Above the elbow, it pierces the deep fascia lateral to the tendon of the biceps brachii and continues into the forearm as the lateral cutaneous nerve of the forearm.
The musculocutaneous nerve innervates the coracobrachialis, biceps brachii, and brachialis muscles. Injury to this nerve can cause weakness in flexion at the shoulder and elbow. Understanding the function and pathway of the musculocutaneous nerve is important in diagnosing and treating injuries or conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 48
Incorrect
-
A 20-year-old man visits the clinic with a complaint of ear pain that started two days ago. He mentions that the pain has reduced considerably, but there is a lot of discharge and he cannot hear from the affected ear. During the examination, you observe a perforated tympanic membrane and yellow discharge in the external auditory canal. Based on the symptoms, you suspect a middle ear infection that led to fluid buildup and subsequent perforation of the tympanic membrane. In this context, which nerve branch innervates the stapedius muscle located in the middle ear?
Note: The changes made are minimal and do not affect the meaning or context of the original text.Your Answer:
Correct Answer: Facial nerve
Explanation:The correct answer is the facial nerve, the seventh cranial nerve. Other nerves mentioned include the vestibulocochlear nerve, maxillary nerve, glossopharyngeal nerve, and mandibular nerve. The stapedius muscle, innervated by the facial nerve, is also discussed. The patient’s ear pain could be due to a perforated eardrum caused by infection.
The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.
The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.
-
This question is part of the following fields:
- Neurological System
-
-
Question 49
Incorrect
-
A 25-year-old climber sustains a humerus fracture and requires surgery. The surgeons opt for a posterior approach to the middle third of the bone. Which nerve is most vulnerable in this procedure?
Your Answer:
Correct Answer: Radial
Explanation:The humerus can cause damage to the radial nerve when approached from the back. To avoid the need for intricate bone exposure, an IM nail may be a better option.
The Radial Nerve: Anatomy, Innervation, and Patterns of Damage
The radial nerve is a continuation of the posterior cord of the brachial plexus, with root values ranging from C5 to T1. It travels through the axilla, posterior to the axillary artery, and enters the arm between the brachial artery and the long head of triceps. From there, it spirals around the posterior surface of the humerus in the groove for the radial nerve before piercing the intermuscular septum and descending in front of the lateral epicondyle. At the lateral epicondyle, it divides into a superficial and deep terminal branch, with the deep branch crossing the supinator to become the posterior interosseous nerve.
The radial nerve innervates several muscles, including triceps, anconeus, brachioradialis, and extensor carpi radialis. The posterior interosseous branch innervates supinator, extensor carpi ulnaris, extensor digitorum, and other muscles. Denervation of these muscles can lead to weakness or paralysis, with effects ranging from minor effects on shoulder stability to loss of elbow extension and weakening of supination of prone hand and elbow flexion in mid prone position.
Damage to the radial nerve can result in wrist drop and sensory loss to a small area between the dorsal aspect of the 1st and 2nd metacarpals. Axillary damage can also cause paralysis of triceps. Understanding the anatomy, innervation, and patterns of damage of the radial nerve is important for diagnosing and treating conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 50
Incorrect
-
Which of the structures listed below is not a content of the carotid sheath?
Your Answer:
Correct Answer: Recurrent laryngeal nerve
Explanation:The common carotid artery is a major blood vessel that supplies the head and neck with oxygenated blood. It has two branches, the left and right common carotid arteries, which arise from different locations. The left common carotid artery originates from the arch of the aorta, while the right common carotid artery arises from the brachiocephalic trunk. Both arteries terminate at the upper border of the thyroid cartilage by dividing into the internal and external carotid arteries.
The left common carotid artery runs superolaterally to the sternoclavicular joint and is in contact with various structures in the thorax, including the trachea, left recurrent laryngeal nerve, and left margin of the esophagus. In the neck, it passes deep to the sternocleidomastoid muscle and enters the carotid sheath with the vagus nerve and internal jugular vein. The right common carotid artery has a similar path to the cervical portion of the left common carotid artery, but with fewer closely related structures.
Overall, the common carotid artery is an important blood vessel with complex anatomical relationships in both the thorax and neck. Understanding its path and relations is crucial for medical professionals to diagnose and treat various conditions related to this artery.
-
This question is part of the following fields:
- Neurological System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)