-
Question 1
Correct
-
You are managing a pediatric patient in the emergency department who needs sedation for suturing. You are considering using ketamine. What is an absolute contraindication to using ketamine in this case?
Your Answer: Aged less than 12 months
Explanation:Ketamine should not be used in children under 12 months old due to the increased risk of laryngospasm and airway complications. The Royal College of Emergency Medicine advises against using ketamine in children under 1 year old in the emergency department, and it should only be administered by experienced clinicians in children aged 5 and under. Ketamine may cause a slight increase in blood pressure and heart rate, making it a suitable option for those with low blood pressure. However, it is contraindicated in individuals with malignant hypertension (blood pressure above 180 mmHg). Please refer to the notes below for additional contraindications.
Further Reading:
Procedural sedation is commonly used by emergency department (ED) doctors to minimize pain and discomfort during procedures that may be painful or distressing for patients. Effective procedural sedation requires the administration of analgesia, anxiolysis, sedation, and amnesia. This is typically achieved through the use of a combination of short-acting analgesics and sedatives.
There are different levels of sedation, ranging from minimal sedation (anxiolysis) to general anesthesia. It is important for clinicians to understand the level of sedation being used and to be able to manage any unintended deeper levels of sedation that may occur. Deeper levels of sedation are similar to general anesthesia and require the same level of care and monitoring.
Various drugs can be used for procedural sedation, including propofol, midazolam, ketamine, and fentanyl. Each of these drugs has its own mechanism of action and side effects. Propofol is commonly used for sedation, amnesia, and induction and maintenance of general anesthesia. Midazolam is a benzodiazepine that enhances the effect of GABA on the GABA A receptors. Ketamine is an NMDA receptor antagonist and is used for dissociative sedation. Fentanyl is a highly potent opioid used for analgesia and sedation.
The doses of these drugs for procedural sedation in the ED vary depending on the drug and the route of administration. It is important for clinicians to be familiar with the appropriate doses and onset and peak effect times for each drug.
Safe sedation requires certain requirements, including appropriate staffing levels, competencies of the sedating practitioner, location and facilities, and monitoring. The level of sedation being used determines the specific requirements for safe sedation.
After the procedure, patients should be monitored until they meet the criteria for safe discharge. This includes returning to their baseline level of consciousness, having vital signs within normal limits, and not experiencing compromised respiratory status. Pain and discomfort should also be addressed before discharge.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 2
Correct
-
You are part of the team managing a pediatric trauma patient in the resuscitation room. You are assisting the attending physician who is performing rapid sequence induction. The attending physician asks you to apply cricoid pressure. What is the recommended amount of pressure that should be applied to the cricoid?
Your Answer: 30-40 Newtons
Explanation:To prevent the aspiration of gastric contents, it is recommended to apply a force of 30-40 Newtons to the cricoid cartilage during cricoid pressure.
Further Reading:
Rapid sequence induction (RSI) is a method used to place an endotracheal tube (ETT) in the trachea while minimizing the risk of aspiration. It involves inducing loss of consciousness while applying cricoid pressure, followed by intubation without face mask ventilation. The steps of RSI can be remembered using the 7 P’s: preparation, pre-oxygenation, pre-treatment, paralysis and induction, protection and positioning, placement with proof, and post-intubation management.
Preparation involves preparing the patient, equipment, team, and anticipating any difficulties that may arise during the procedure. Pre-oxygenation is important to ensure the patient has an adequate oxygen reserve and prolongs the time before desaturation. This is typically done by breathing 100% oxygen for 3 minutes. Pre-treatment involves administering drugs to counter expected side effects of the procedure and anesthesia agents used.
Paralysis and induction involve administering a rapid-acting induction agent followed by a neuromuscular blocking agent. Commonly used induction agents include propofol, ketamine, thiopentone, and etomidate. The neuromuscular blocking agents can be depolarizing (such as suxamethonium) or non-depolarizing (such as rocuronium). Depolarizing agents bind to acetylcholine receptors and generate an action potential, while non-depolarizing agents act as competitive antagonists.
Protection and positioning involve applying cricoid pressure to prevent regurgitation of gastric contents and positioning the patient’s neck appropriately. Tube placement is confirmed by visualizing the tube passing between the vocal cords, auscultation of the chest and stomach, end-tidal CO2 measurement, and visualizing misting of the tube. Post-intubation management includes standard care such as monitoring ECG, SpO2, NIBP, capnography, and maintaining sedation and neuromuscular blockade.
Overall, RSI is a technique used to quickly and safely secure the airway in patients who may be at risk of aspiration. It involves a series of steps to ensure proper preparation, oxygenation, drug administration, and tube placement. Monitoring and post-intubation care are also important aspects of RSI.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 3
Correct
-
A 35 year old female trauma patient is being treated in the resus. It is decided to administer intravenous ketamine for rapid sequence induction, and your consultant requests you to prepare the medication. What is a frequently observed side effect of ketamine?
Your Answer: Nystagmus
Explanation:Ketamine administration can lead to various side effects, including nystagmus and diplopia. Other potential side effects include tachycardia, hypertension, laryngospasm, unpleasant hallucinations or emergence phenomena, nausea and vomiting, hypersalivation, increased intracranial and intraocular pressure, and abnormal tonic-clonic movements.
Further Reading:
There are four commonly used induction agents in the UK: propofol, ketamine, thiopentone, and etomidate.
Propofol is a 1% solution that produces significant venodilation and myocardial depression. It can also reduce cerebral perfusion pressure. The typical dose for propofol is 1.5-2.5 mg/kg. However, it can cause side effects such as hypotension, respiratory depression, and pain at the site of injection.
Ketamine is another induction agent that produces a dissociative state. It does not display a dose-response continuum, meaning that the effects do not necessarily increase with higher doses. Ketamine can cause bronchodilation, which is useful in patients with asthma. The initial dose for ketamine is 0.5-2 mg/kg, with a typical IV dose of 1.5 mg/kg. Side effects of ketamine include tachycardia, hypertension, laryngospasm, unpleasant hallucinations, nausea and vomiting, hypersalivation, increased intracranial and intraocular pressure, nystagmus and diplopia, abnormal movements, and skin reactions.
Thiopentone is an ultra-short acting barbiturate that acts on the GABA receptor complex. It decreases cerebral metabolic oxygen and reduces cerebral blood flow and intracranial pressure. The adult dose for thiopentone is 3-5 mg/kg, while the child dose is 5-8 mg/kg. However, these doses should be halved in patients with hypovolemia. Side effects of thiopentone include venodilation, myocardial depression, and hypotension. It is contraindicated in patients with acute porphyrias and myotonic dystrophy.
Etomidate is the most haemodynamically stable induction agent and is useful in patients with hypovolemia, anaphylaxis, and asthma. It has similar cerebral effects to thiopentone. The dose for etomidate is 0.15-0.3 mg/kg. Side effects of etomidate include injection site pain, movement disorders, adrenal insufficiency, and apnoea. It is contraindicated in patients with sepsis due to adrenal suppression.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 4
Correct
-
A 45 year old female patient has been brought to the emergency department with multiple injuries following a fall while hiking in the mountains. You observe significant injuries to the face. There is also bruising to the chest wall and a fracture dislocation to the ankle. The patient has undergone rapid sequence induction with Propofol and Suxamethonium. A chest X-ray shows multiple rib fractures but no pneumothorax or visible pulmonary contusion. You notice that the patient's end tidal CO2 has steadily increased since being intubated from 4.5 KPa to 7.4 KPa. You observe esophageal temperature is 39.3ºC. What is the likely cause of these readings?
Your Answer: Malignant hyperthermia
Explanation:The earliest and most frequent clinical indication of malignant hyperthermia is typically an increase in end tidal CO2. An unexplained elevation in end tidal CO2 is often the initial and most reliable sign of this condition.
Further Reading:
Malignant hyperthermia is a rare and life-threatening syndrome that can be triggered by certain medications in individuals who are genetically susceptible. The most common triggers are suxamethonium and inhalational anaesthetic agents. The syndrome is caused by the release of stored calcium ions from skeletal muscle cells, leading to uncontrolled muscle contraction and excessive heat production. This results in symptoms such as high fever, sweating, flushed skin, rapid heartbeat, and muscle rigidity. It can also lead to complications such as acute kidney injury, rhabdomyolysis, and metabolic acidosis. Treatment involves discontinuing the trigger medication, administering dantrolene to inhibit calcium release and promote muscle relaxation, and managing any associated complications such as hyperkalemia and acidosis. Referral to a malignant hyperthermia center for further investigation is also recommended.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 5
Correct
-
A 72 year old male presents to the emergency department after a fall on his outstretched arm. X-ray results confirm a dislocated shoulder. Your consultant recommends reducing it under sedation. What are the four essential elements for successful procedural sedation?
Your Answer: Analgesia, anxiolysis, sedation and amnesia
Explanation:The four essential elements for effective procedural sedation are analgesia, anxiolysis, sedation, and amnesia. According to the Royal College of Emergency Medicine (RCEM), it is important to prioritize pain management before sedation, using appropriate analgesics based on the patient’s pain level. Non-pharmacological methods should be considered to reduce anxiety, such as creating a comfortable environment and involving supportive family members. The level of sedation required should be determined in advance, with most procedures in the emergency department requiring moderate to deep sedation. Lastly, providing a degree of amnesia will help minimize any unpleasant memories associated with the procedure.
Further Reading:
Procedural sedation is commonly used by emergency department (ED) doctors to minimize pain and discomfort during procedures that may be painful or distressing for patients. Effective procedural sedation requires the administration of analgesia, anxiolysis, sedation, and amnesia. This is typically achieved through the use of a combination of short-acting analgesics and sedatives.
There are different levels of sedation, ranging from minimal sedation (anxiolysis) to general anesthesia. It is important for clinicians to understand the level of sedation being used and to be able to manage any unintended deeper levels of sedation that may occur. Deeper levels of sedation are similar to general anesthesia and require the same level of care and monitoring.
Various drugs can be used for procedural sedation, including propofol, midazolam, ketamine, and fentanyl. Each of these drugs has its own mechanism of action and side effects. Propofol is commonly used for sedation, amnesia, and induction and maintenance of general anesthesia. Midazolam is a benzodiazepine that enhances the effect of GABA on the GABA A receptors. Ketamine is an NMDA receptor antagonist and is used for dissociative sedation. Fentanyl is a highly potent opioid used for analgesia and sedation.
The doses of these drugs for procedural sedation in the ED vary depending on the drug and the route of administration. It is important for clinicians to be familiar with the appropriate doses and onset and peak effect times for each drug.
Safe sedation requires certain requirements, including appropriate staffing levels, competencies of the sedating practitioner, location and facilities, and monitoring. The level of sedation being used determines the specific requirements for safe sedation.
After the procedure, patients should be monitored until they meet the criteria for safe discharge. This includes returning to their baseline level of consciousness, having vital signs within normal limits, and not experiencing compromised respiratory status. Pain and discomfort should also be addressed before discharge.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 6
Correct
-
A 15 year old male is brought to the emergency department by his parents after he fell while climbing over a fence and sustained a deep cut to the arm where the metal spike pierced the skin. An X-ray reveals no bone damage. You opt to examine and cleanse the wound under sedation as the patient is extremely upset. You choose to sedate the patient with Ketamine. What is the main way in which Ketamine works?
Your Answer: NMDA receptor antagonist
Explanation:Ketamine primarily works by blocking NMDA receptors, although its complete mechanism of action is not yet fully comprehended. Ongoing research is exploring its impact on various other receptors.
Further Reading:
Procedural sedation is commonly used by emergency department (ED) doctors to minimize pain and discomfort during procedures that may be painful or distressing for patients. Effective procedural sedation requires the administration of analgesia, anxiolysis, sedation, and amnesia. This is typically achieved through the use of a combination of short-acting analgesics and sedatives.
There are different levels of sedation, ranging from minimal sedation (anxiolysis) to general anesthesia. It is important for clinicians to understand the level of sedation being used and to be able to manage any unintended deeper levels of sedation that may occur. Deeper levels of sedation are similar to general anesthesia and require the same level of care and monitoring.
Various drugs can be used for procedural sedation, including propofol, midazolam, ketamine, and fentanyl. Each of these drugs has its own mechanism of action and side effects. Propofol is commonly used for sedation, amnesia, and induction and maintenance of general anesthesia. Midazolam is a benzodiazepine that enhances the effect of GABA on the GABA A receptors. Ketamine is an NMDA receptor antagonist and is used for dissociative sedation. Fentanyl is a highly potent opioid used for analgesia and sedation.
The doses of these drugs for procedural sedation in the ED vary depending on the drug and the route of administration. It is important for clinicians to be familiar with the appropriate doses and onset and peak effect times for each drug.
Safe sedation requires certain requirements, including appropriate staffing levels, competencies of the sedating practitioner, location and facilities, and monitoring. The level of sedation being used determines the specific requirements for safe sedation.
After the procedure, patients should be monitored until they meet the criteria for safe discharge. This includes returning to their baseline level of consciousness, having vital signs within normal limits, and not experiencing compromised respiratory status. Pain and discomfort should also be addressed before discharge.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 7
Correct
-
A 32 year old has undergone reduction of fracture-dislocation to the right shoulder under procedural sedation. Following the reduction, the patient reports feeling nauseated and subsequently vomits. What is the most significant risk factor for postoperative nausea and vomiting?
Your Answer: Female gender
Explanation:The most significant factor in predicting postoperative nausea and vomiting (PONV) is being female. Females are three times more likely than males to experience PONV. Additionally, not smoking increases the risk of PONV by about two times. Having a history of motion sickness, PONV, or both also approximately doubles the risk of PONV. Age is another factor, with older adults being less likely to suffer from PONV. In children, those below 3 years of age have a lower risk of PONV compared to those older than 3.
Further Reading:
postoperative nausea and vomiting (PONV) is a common occurrence following procedures performed under sedation or anesthesia. It can be highly distressing for patients. Several risk factors have been identified for PONV, including female gender, a history of PONV or motion sickness, non-smoking status, patient age, use of volatile anesthetics, longer duration of anesthesia, perioperative opioid use, use of nitrous oxide, and certain types of surgery such as abdominal and gynecological procedures.
To manage PONV, antiemetics are commonly used. These medications work by targeting different receptors in the body. Cyclizine and promethazine are histamine H1-receptor antagonists, which block the action of histamine and help reduce nausea and vomiting. Ondansetron is a serotonin 5-HT3 receptor antagonist, which blocks the action of serotonin and is effective in preventing and treating PONV. Prochlorperazine is a dopamine D2 receptor antagonist, which blocks the action of dopamine and helps alleviate symptoms of nausea and vomiting. Metoclopramide is also a dopamine D2 receptor antagonist and a 5-HT3 receptor antagonist, providing dual action against PONV. It is also a 5-HT4 receptor agonist, which helps improve gastric emptying and reduces the risk of PONV.
Assessment and management of PONV involves a comprehensive approach. Healthcare professionals need to assess the patient’s risk factors for PONV and take appropriate measures to prevent its occurrence. This may include selecting the appropriate anesthesia technique, using antiemetics prophylactically, and providing adequate pain control. In cases where PONV does occur, prompt treatment with antiemetics should be initiated to alleviate symptoms and provide relief to the patient. Close monitoring of the patient’s condition and response to treatment is essential to ensure effective management of PONV.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 8
Correct
-
You have a debrief session with your mentor after a case involving a patient who experienced systemic toxicity from local anesthesia. Towards the end of the conversation, your mentor emphasizes the importance of reporting such episodes. In the UK, which of the following organizations should be notified about incidents of local anesthetic systemic toxicity?
Your Answer: National Patient Safety Agency
Explanation:Instances of local anaesthetic systemic toxicity (LAST) should be promptly reported to the National Patient Safety Agency (NPSA). Additionally, it is advisable to report any adverse drug reactions to the Medicines and Healthcare products Regulatory Agency (MHRA) through their yellow card scheme. Please refer to the follow-up section in the notes for further details.
Further Reading:
Local anaesthetics, such as lidocaine, bupivacaine, and prilocaine, are commonly used in the emergency department for topical or local infiltration to establish a field block. Lidocaine is often the first choice for field block prior to central line insertion. These anaesthetics work by blocking sodium channels, preventing the propagation of action potentials.
However, local anaesthetics can enter the systemic circulation and cause toxic side effects if administered in high doses. Clinicians must be aware of the signs and symptoms of local anaesthetic systemic toxicity (LAST) and know how to respond. Early signs of LAST include numbness around the mouth or tongue, metallic taste, dizziness, visual and auditory disturbances, disorientation, and drowsiness. If not addressed, LAST can progress to more severe symptoms such as seizures, coma, respiratory depression, and cardiovascular dysfunction.
The management of LAST is largely supportive. Immediate steps include stopping the administration of local anaesthetic, calling for help, providing 100% oxygen and securing the airway, establishing IV access, and controlling seizures with benzodiazepines or other medications. Cardiovascular status should be continuously assessed, and conventional therapies may be used to treat hypotension or arrhythmias. Intravenous lipid emulsion (intralipid) may also be considered as a treatment option.
If the patient goes into cardiac arrest, CPR should be initiated following ALS arrest algorithms, but lidocaine should not be used as an anti-arrhythmic therapy. Prolonged resuscitation may be necessary, and intravenous lipid emulsion should be administered. After the acute episode, the patient should be transferred to a clinical area with appropriate equipment and staff for further monitoring and care.
It is important to report cases of local anaesthetic toxicity to the appropriate authorities, such as the National Patient Safety Agency in the UK or the Irish Medicines Board in the Republic of Ireland. Additionally, regular clinical review should be conducted to exclude pancreatitis, as intravenous lipid emulsion can interfere with amylase or lipase assays.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 9
Correct
-
You are part of the team managing a 60 year old patient who has experienced cardiac arrest. What is the appropriate dosage of adrenaline to administer to this patient?
Your Answer: 1 mg IV
Explanation:In cases of cardiac arrest, it is recommended to administer 1 mg of adrenaline intravenously (IV) every 3-5 minutes. According to the 2021 resus council guidelines for adult advanced life support (ALS), the administration of vasopressors should follow these guidelines:
– For adult patients in cardiac arrest with a non-shockable rhythm, administer 1 mg of adrenaline IV (or intraosseous) as soon as possible.
– For adult patients in cardiac arrest with a shockable rhythm, administer 1 mg of adrenaline IV (or intraosseous) after the third shock.
– Continuously repeat the administration of 1 mg of adrenaline IV (or intraosseous) every 3-5 minutes throughout the ALS procedure.Further Reading:
In the management of respiratory and cardiac arrest, several drugs are commonly used to help restore normal function and improve outcomes. Adrenaline is a non-selective agonist of adrenergic receptors and is administered intravenously at a dose of 1 mg every 3-5 minutes. It works by causing vasoconstriction, increasing systemic vascular resistance (SVR), and improving cardiac output by increasing the force of heart contraction. Adrenaline also has bronchodilatory effects.
Amiodarone is another drug used in cardiac arrest situations. It blocks voltage-gated potassium channels, which prolongs repolarization and reduces myocardial excitability. The initial dose of amiodarone is 300 mg intravenously after 3 shocks, followed by a dose of 150 mg after 5 shocks.
Lidocaine is an alternative to amiodarone in cardiac arrest situations. It works by blocking sodium channels and decreasing heart rate. The recommended dose is 1 mg/kg by slow intravenous injection, with a repeat half of the initial dose after 5 minutes. The maximum total dose of lidocaine is 3 mg/kg.
Magnesium sulfate is used to reverse myocardial hyperexcitability associated with hypomagnesemia. It is administered intravenously at a dose of 2 g over 10-15 minutes. An additional dose may be given if necessary, but the maximum total dose should not exceed 3 g.
Atropine is an antagonist of muscarinic acetylcholine receptors and is used to counteract the slowing of heart rate caused by the parasympathetic nervous system. It is administered intravenously at a dose of 500 mcg every 3-5 minutes, with a maximum dose of 3 mg.
Naloxone is a competitive antagonist for opioid receptors and is used in cases of respiratory arrest caused by opioid overdose. It has a short duration of action, so careful monitoring is necessary. The initial dose of naloxone is 400 micrograms, followed by 800 mcg after 1 minute. The dose can be gradually escalated up to 2 mg per dose if there is no response to the preceding dose.
It is important for healthcare professionals to have knowledge of the pharmacology and dosing schedules of these drugs in order to effectively manage respiratory and cardiac arrest situations.
-
This question is part of the following fields:
- Basic Anaesthetics
-
-
Question 10
Correct
-
A 52 year old male is brought to the emergency department with severe head and chest injuries. As his Glasgow Coma Scale (GCS) continues to decline, it is determined that intubation is necessary. You begin preparing for rapid sequence induction (RSI). Before administering sodium thiopentone, the patient's blood pressure is measured and found to be 88/58 mmHg. What is the most suitable course of action?
Your Answer: Use half normal dose
Explanation:In patients with pre-existing hypovolaemia, the amount of sodium thiopentone administered should be reduced by half. This is because sodium thiopentone can cause venodilation and myocardial depression, which can result in significant hypovolaemia. Alternatively, an induction agent that does not cause hypotension, such as Etomidate, can be used instead. It is important to note that both propofol and thiopentone are known to cause hypotension.
Further Reading:
There are four commonly used induction agents in the UK: propofol, ketamine, thiopentone, and etomidate.
Propofol is a 1% solution that produces significant venodilation and myocardial depression. It can also reduce cerebral perfusion pressure. The typical dose for propofol is 1.5-2.5 mg/kg. However, it can cause side effects such as hypotension, respiratory depression, and pain at the site of injection.
Ketamine is another induction agent that produces a dissociative state. It does not display a dose-response continuum, meaning that the effects do not necessarily increase with higher doses. Ketamine can cause bronchodilation, which is useful in patients with asthma. The initial dose for ketamine is 0.5-2 mg/kg, with a typical IV dose of 1.5 mg/kg. Side effects of ketamine include tachycardia, hypertension, laryngospasm, unpleasant hallucinations, nausea and vomiting, hypersalivation, increased intracranial and intraocular pressure, nystagmus and diplopia, abnormal movements, and skin reactions.
Thiopentone is an ultra-short acting barbiturate that acts on the GABA receptor complex. It decreases cerebral metabolic oxygen and reduces cerebral blood flow and intracranial pressure. The adult dose for thiopentone is 3-5 mg/kg, while the child dose is 5-8 mg/kg. However, these doses should be halved in patients with hypovolemia. Side effects of thiopentone include venodilation, myocardial depression, and hypotension. It is contraindicated in patients with acute porphyrias and myotonic dystrophy.
Etomidate is the most haemodynamically stable induction agent and is useful in patients with hypovolemia, anaphylaxis, and asthma. It has similar cerebral effects to thiopentone. The dose for etomidate is 0.15-0.3 mg/kg. Side effects of etomidate include injection site pain, movement disorders, adrenal insufficiency, and apnoea. It is contraindicated in patients with sepsis due to adrenal suppression.
-
This question is part of the following fields:
- Basic Anaesthetics
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)